Skip to main content

As Civic Digital Fellows, Allen School students “code it forward” by combining work experience with public service

Mayanja and her cohort of Fellows in 2018

In the summer of 2018, Allen School senior Mariam Mayanja wanted to try something new. Instead of pursuing a computer science internship at a big tech company as she had in the past, she headed to Washington D.C. to become a Civic Digital Fellow. The Bothell, Washington native, who will continue her studies as part of the Allen School’s B.S./M.S. program, worked for the Department of Veterans Affairs, with the United States Digital Services Team

“I found out about the Fellowship on the UW Society of Women Engineers Facebook page. I was looking for internships and was really intrigued to see a tech internship in a space where I had never thought I’d see tech,” Mayanja said. “Right off the bat, they had me glued by how cool all of the 2017 fellows’ projects sounded.”

The Civic Digital Fellowship program was created by a non-profit organization called Coding it Forward, whose mission is to create opportunities for young people working in technology to experience serving in a socially-minded and civically-engaged field. They developed the Fellowship program to offer government internships to college students interested in being employed by the federal government.

“Less than 3% of the federal technology workforce is under the age of 30, and over a third of federal technology employees will be eligible to retire in the next five years, making talent programs like the Fellowship all the more important,” said Rachel Dodell, co-founder and executive director of Coding it Forward. Not only does the Fellowship provide an opportunity for the federal government to build new talent pipelines, but it also exposes students to the incredible impact that one can make in public service.”

Mayanja was one of only 36 Fellows chosen in 2018 out of a pool of more than 850 applicants. She and another Fellow spent their internship building the GI Bill School Feedback Tool, which gives members of the military the chance to report an issue or complaint about a school or training facility that’s eligible to receive benefits directly to Veterans Affairs. 

“I led the design, project management, and user research for the tool. It was an amazing experience because I was able to try out all of these different roles and I really loved being a design researcher and project manager,” she said. “Focusing on the GI Bill School Feedback Tool enabled me to do my first project that centered around equity and inclusion. The entire goal of it was to help veterans attain higher education in a way where they knew they would have someone to advocate for them if they needed it.”

Mayanja said that the experience was kindling for a fire that started in her to build upon Diversity, Equity and Inclusion initiatives in the Allen School. It was one of her inspirations to start Minorities in Tech at the University of Washington, which develops and fosters a diverse community that increases solidarity, allyship, and support to promote higher retention rates of minorities within the technology industry and academia. She also helped start Student Leaders for Inclusion, Diversity and Equity to gain more perspective in helping the Allen School administration focus on each in its strategic plan. 

In addition to sparking her interest in working for social justice, the Fellowship built upon Mayanja’s previous experience with user research over her three internships at MicrosoftLiving in D.C., she was able to take advantage of the free museums and opportunities to bond with the other Fellows. According to Mayanja, the only negative experience was dealing with all of the mosquitos that call D.C. home — her experience was such a positive one, in fact, that she encouraged fellow Allen School senior Geovani Castro to apply for a Fellowship in 2020.

Castro, who grew up in Lynnwood, Washington, said the application process was challenging, but he took time to reflect on his past volunteering and civic duty experiences and explained how meaningful those had been to him. He spent his time as a Fellow working for the National Institutes of Health, working on the Common Data Elements group at the National Library of Medicine. 

“Working in government is extremely different from anything I’ve done before,” he said. “Even though I’m planning to go back to industry, it’s very interesting experiencing a more democratic process. I’ve found working in industry to be a different process, so I wanted to give something more gratifying a chance. My software design classes came in handy as I got the opportunity to work at the NIH on a website for groundbreaking COVID-19 research.”

Castro, who learned how to work completely on his own project during his Fellowship, said the ability to design its limits was extremely refreshing — as was receiving clear directions and a concrete task to accomplish. However, because of the pandemic, he wasn’t able to go to D.C. and was thus disappointed to miss out on seeing the Capitol and meeting the other Fellows in person.

While Castro prefers to build a career in industry over government, he plans to volunteer and leverage his resources to help the less fortunate throughout his career. He also recommends that other Allen Students consider applying to the program. 

According to Dodell, the UW has had five students complete a Fellowship through the program.

The first time Coding it Forward had a University of Washington student was in our inaugural cohort in 2017 — Andrea Chen (2017), Mariam (2018), Justin Bao (summer 2020), and Geovani (fall 2020) have worked across three agencies, including the U.S. Census Bureau, the U.S. Department of Veterans Affairs, and the National Institutes of Health.”

“There isn’t a lot of guidance in how to do the process itself, which can be intimidating, but the supervisors are extremely kind and more than willing to drop what they’re doing to assist you,” he said. “Any sort of civic fellowship can be a career altering experience considering how different they are from other internships.” 

For more information on the Civic Digital Fellowship and when to apply, visit Coding it Forward

Read more →

Undergraduates in the Allen School’s UW Reality Lab have a whale of a time building virtual field experience for geology students

John Akers, director of research and education (left to right) Needle, Mooc and Wang meet in the UW Reality Lab incubator (Photo taken January 2020 by David Kessler).

In the coal region of Shamokin, Pennsylvania, an impressive geological structure called the Whaleback Anticline has become a natural classroom for geology students. The former strip mine is a geological formation that looks like the back of a whale. Max Needle, a Pennsylvania native and geology graduate student in the University of Washington’s Department of Earth and Space Sciences (ESS), knows the site well. With a camera, a drone and support from his faculty advisor Juliet Crider and fellow graduate student Keith Hodson, Needle built a 3D digital replica of the site with the intention of giving more students access to this geological wonder. 

The anticline, which is on private land, requires special permission to visit and is not easy to navigate due to its enormity. The project began with the idea of making the site inclusive, accessible and available to students that could not get to it in person but turned out to be a vital experience for undergraduate geology students forced to cancel site visits because of the COVID-19 pandemic.

When Needle took his digital replica to the UW’s Reality Lab last January to get help with the program,  the Allen School students would take the project in an exciting new direction by turning his mobile 3D tour of the Whaleback into an online classroom — and eventually, a virtual reality experience. 

“The CS students that worked on the project with me went above and beyond my expectations,” Needle said. “They finished the initial project pretty quickly and asked what my dream for this project might be and took it to the next level.”

Allen School senior Jacky Mooc and sophomore Andrew Wang worked with Needle on his project as undergraduate researchers in the Reality Lab. Tasked with creating a virtual tour of the Whaleback, with stops for users to learn more about its history and geological features, Mooc and Wang got to work. But as they neared completion, the pandemic hit and classes moved online. Because geography students wouldn’t be able to travel to do field work over the summer, Needle, Mooc and Wang pivoted away from moving the application into virtual reality and focused instead on adding more functionality to it. In addition to enabling students to explore the Whaleback site on the ground or through the air, the team moved the program to WebGL and added a robust measuring system that simulates the types of measurements geologists take when physically visiting sites. The programming language renders interactive 2D and 3D graphics allowing for greater accessibility. The group also added an extensive tutorial and traceable tour stops featuring puzzles and quizzes, essentially turning it into a game. After the initial summer course, the team can now implement the program in VR.

An image of the Whaleback program

“Even though we only recently began to implement the Whaleback project into VR, mainly because the scope for the WebGL version grew, developing for it has been very promising so far,” said Mooc. “There are lots of outside tools to use in Unity that make developing for VR faster. And luckily, since I joined this project, I have taken two courses in storytelling in VR at the Allen School, which gave me experience with Unity, and maybe more importantly, taught a lot about VR design considerations. However, this project still warranted a lot of self-learning in order to use Unity and SteamVR.”

Last summer, the first iteration of the virtual geology experience based on Needle’s work was used as part of an online version of an ESS summer field course. Jacob Childers, who completed his B.S. in geoscience last summer, enjoyed the opportunity to tour the geographic formation virtually since traveling was not an option.

“I was initially excited that there was a chance to study the Whaleback remotely. We had been using tools like Google Earth and ARCgis for the bulk of our remote field experience, so it was exciting to try something new, but I was a little nervous that it wouldn’t be very useful,” he said. “I really enjoyed the Whaleback experience more than I thought I would. The program was pretty user friendly and the controls were pretty smooth and intuitive to use.”

Childers said that the game did a good job showing the scale of the Whaleback and had a lot more detail than he expected—but he had some feedback for the developers. 

“As a geologist, I enjoyed the game but I wish that we could make more observations aside from determining the axes of folds and taking strike and dip measurements,” he said. “In terms of strike and dip measurements and taking stereonets, this program had a large advantage over programs like Google Earth, so this was a really nice supplement.”

Max Needle
Needle working on the Whaleback program

After hearing Childers’ feedback, Mooc went back and designed a prefab in Unity 3D for designers to create a greater level of detail for future models or games, if they think it’s necessary. 

“Rather than using a higher-res version of a 3D model and really bogging down the machine of the user, there’s now a way to click on objects and read about features in greater detail and see pictures at a higher-res or even microscopic scale,” Needle explained. “This new prefab is in the works for a new game that we’ll release as part of an ESS 212 course in three weeks.”

Needle and the team are open to feedback and he has continued to use the program the team built in additional ESS classes. A demonstration of the Whaleback Anticline Field Adventure is available to watch, and anyone interested in trying it out can do so at www.virtualfieldgeology.com. It will be available for Oculus VR, and also in Unity so it can be adapted later for iOS or XBox, in the spring.

Read more →

Allen School student Lianhui Qin earns Microsoft Research Ph.D. Fellowship to develop AI agents with human-like common-sense reasoning capabilities

Lianhui Qin

Lianhui Qin, a Ph.D. student working with Allen School professor Yejin Choi, has been named a 2021 Microsoft Research Ph.D. Fellow for her work in developing language models in counterfactual and abductive reasoning. Her research focuses on natural language processing and machine learning, specifically in common-sense rationale in natural language generation. 

Qin is one of 10 Fellows selected this year and aims to use her Fellowship to create artificial intelligence (AI) agents with human-like common-sense reasoning capabilities to communicate with and assist humans in a reasonable, effective and scalable way. 

“I am developing principled methodologies of combining the power of deep networks trained on massive corpus, symbolic and distributed knowledge in various forms, and contextual causal reasoning for understanding, generation, and imagination,” Qin said. “I believe common-sense reasoning with natural language is a necessary component towards robust, safe, explainable and controllable AI. This would make a huge impact on the large-scale use of AI in society.” 

By endowing machines with common sense reasoning capabilities, Qin will build AI entities that can observe and imagine future alternatives. While machine learning systems of today are starting to understand text and generate plausible-sounding language, they are far from having human-level capabilities. Her work focuses on methodology, evaluation and application to bridge the gap between humans and machines. 

Qin has developed a general language decoding framework to address fundamental limitations of neural language models. It can perform complex common-sense reasoning activities by considering future constraints. She has analyzed the counterfactual reasoning problem that is in language generation and conducted the first large-scale test to measure and understand neural models in counterfactual reasoning. These steps allowed her to enhance neural models with common-sense knowledge and rationale. 

“Lianhui’s research is original, ambitious, and daring,” said Choi. “Lianhui is on a mission to tackle one of the hardest challenges in AI — advanced reasoning capabilities in natural language, spanning across common-sense reasoning and nonmonotonic reasoning such as counterfactual reasoning and abductive inference. Pursuing research in this space requires an exceptional level of intellectual independence, technical creativity, and courage, as there is little prior work to extend or model after.”

Choi said that obvious applications of existing methods and frameworks do not suffice. This is why most existing research to date, especially recent deep learning methods, have focused primarily on climbing leaderboards of more familiar tasks and datasets, instead of creating a new path forward in the fundamental limitations in AI as commonsense and nonmonotonic reasoning. All of this presents major challenges in current frameworks of AI and deep learning.  

So far, Qin’s research has contributed to a greater understanding of the core aspects of human-like, complex common-sense thinking as well as the development of generative neural reasoning approaches and applications with large-scale evaluations. She has published nine papers at top NLP and ML conferences, including the Association for Computational Linguistics, Conference on Neural Information Processing Systems and Empirical Methods in Natural Language Processing.

The Microsoft Research Ph.D. Fellowship has supported hundreds of fellows over the last two decades. Previous Allen School recipients include Vikram Iyer (2018), Kira Goldner (2017), Lilian de Greef and Irene Zhang (2015) and Yoav Artzi (2014). Learn more about the 2021 Microsoft Research Ph.D. Fellow here

Congratulations, Lianhui! 

Read more →

Allen School faculty and alumni honored by IEEE for enduring contributions to software engineering, internet-scale computing and artificial intelligence

IEEE logo

The Institute of Electrical and Electronics Engineers (IEEE) recently honored three members of the Allen School community for advancing the field of computing: professor and alumnus Michael Ernst (Ph.D., ‘00), affiliate professor Thomas Zimmermann of Microsoft Research, and alumnus Jeffrey Dean (Ph.D., ‘96) of Google. Ernst and Zimmerman were elevated to IEEE Fellows in recognition of their career contributions in software engineering, while Dean earned the organization’s prestigious John von Neumann Medal for advancing internet-scale computing and artificial intelligence. 

Each year, the IEEE Fellows Program recognizes members with extraordinary records of accomplishment in computing, aerospace systems, biomedical engineering, energy, and more. With 420,000 members in 160 countries, a maximum of only one-tenth of one percent of the total voting membership can be elevated to Fellow status in a given year. The John von Neumann Medal, which is among the highest honors IEEE bestows upon members of the engineering community, recognizes individuals who have made outstanding contributions in computer hardware, software or systems that have had a lasting impact on technology, society, and the engineering profession.

Michael Ernst, IEEE Fellow

Michael Ernst

After earning his Ph.D. from the Allen School working with the late professor David Notkin, Michael Ernst spent eight years on the faculty of MIT. He returned to the Pacific Northwest in 2009 to take up a faculty position in the Allen School, where he is part of the Programming Languages and Software Engineering (PLSE) group. Since rejoining his alma mater, Ernst has continued to make significant contributions through research and mentorship that have had an enduring impact on the field. IEEE recognized that impact by electing him Fellow for “contributions to software analysis, testing, and verification.”

One of Ernst’s earliest contributions, which he made while a Ph.D. student at UW, was Daikon, a tool that enables programmers to easily identify program properties that must be preserved when modifying code. The novel techniques he developed with his collaborators — Notkin, Jake Cockrell (M.S., ’99), and Allen School alumnus William G. Griswold (Ph.D., ’91), now a professor at University of California, San Diego — offered a revolutionary solution that went on to impact the research community in testing, verification and programming languages. The team’s 1999 paper presenting Daikon, “Dynamically discovering likely program invariants to support program evolution,” went on to earn the 2013 Impact Paper Award from the Association for Computing Machinery’s Special Interest Group on Software Engineering (ACM SIGSOFT). 

Ernst later created Randoop, an instrumental tool for generating tests for programs written in object-oriented languages such as Java and .NET, with Carlos Pacheco of Google and Shuvendu Lahiri and Thomas Ball of Microsoft Research while he was on the faculty of MIT. Randoop generates and executes one test at a time and classifies it as a normal execution, a failure, or an illegal input; it then uses that information to find biases in the subsequent generation process to extend good tests and avoid bad tests. A decade later, Ernst and the team earned the Most Influential Paper Award from the International Conference on Software Engineering (ICSE) for their work. Even today, Randoop remains the standard benchmark against which other test generation tools are measured.

For programmers working in Java, Ernst and his colleagues developed the Checker Framework, a system for easily and effectively developing special-purpose type systems that can prevent software bugs. The team presented its work in a 2008 paper that later earned a 2018 Impact Paper Award from the International Symposium on Software Testing and Analysis (ISSTA). The following year, Ernst earned his second ISSTA Impact Paper Award for “HAMPI: a solver for string constraints.” HAMPI is designed for constraints generated by program analysis tools and automated bug finders. Given a set of constraints, HAMPI outputs a string that satisfies all the constraints, or reports that the constraints are unsatisfiable, at a faster pace than similar tools. 

During his career, Ernst has received a total of nine ACM Distinguished Paper Awards in addition to a Best Paper Award from the European Conference on Object-Oriented Programming (ECOOP). Last year, Ernst’s extraordinary career contributions to the field of software engineering earned him the ACM SIGSOFT Outstanding Research Award. He previously received the CRA-E Undergraduate Research Faculty Mentoring Award in 2018, in recognition of his exceptional support for student researchers, and the inaugural John Backus Award — created by IBM to honor mid-career university faculty members — in 2009. Ernst was elected a Fellow of the ACM in 2014. 

Ernst’s election as an IEEE Fellow brings the total number of current or former Allen School faculty members who have earned this distinction to 17.

Thomas Zimmermann, IEEE Fellow

Thomas Zimmermann

Thomas Zimmermann, who has been an affiliate faculty member in the Allen School since 2011, is a member of the Software Analysis and Intelligence (SAINTES) group at Microsoft Research. He focuses on the development of solutions that increase programmer productivity, including tools for the systematic mining of version archives and bug databases. His goal is to help developers and managers learn from past successes and failures to create better software. IEEE named Zimmerman a Fellow based on his “contributions to data science in software engineering, research and practice.”

Zimmermann earned his Ph.D. from Saarland University in Saarbrücken, Germany and joined Microsoft Research in 2008. During his career, he has earned a total of seven Most Influential Paper or Test of Time Awards and five ACM SIGSOFT Distinguished Paper Awards for his work. Last year, Zimmermann shared the IEEE CS TCSE New Direction Award with Ahmed Hassan of Queen’s University for their leadership in establishing the field of mining software repositories (MSR) and a successful conference series with the same name, which advanced the use of analytics and data science in software engineering and led the field in new directions. In addition to his research, Zimmermann serves as co-editor in chief for the journal Empirical Software Engineering and current chair of ACM SIGSOFT.

Jeffrey Dean, John von Neumann Medal

Jeff Dean

Allen School alumnus Jeffrey Dean was honored with the 2021 John von Neumann Medal in recognition of his “contributions to the science and engineering of large-scale distributed computer systems and artificial intelligence systems.” Dean, who completed his Ph.D. working with then-professor Craig Chambers on the development of whole-program optimization techniques for object-oriented languages, is currently a Google Senior Fellow and senior vice president of Google Research and Google Health.

Dean joined Google in 1999, roughly a year after its founding — making him one of the company’s longest-serving employees. During his tenure, Dean led the conception, design and implementation of core elements of Google’s search, advertising and cloud infrastructure that would transform the internet and computing as we know it. His contributions included five generations of the company’s crawling, indexing, and query serving systems. Dean was also responsible for the initial development of Google’s AdSense for Content, which revolutionized online advertising by enabling content creators to monetize their websites.

Dean’s subsequent contributions to internet-scale data storage and processing, in collaboration with Google colleague Sanjay Ghemawat, helped propel the company to the forefront of cloud computing. He played a leading role in the design and implementation of MapReduce, a system for simplifying the development of large-scale data processing applications. To date, the paper presenting MapReduce has garnered more than 30,000 citations and inspired future advances in distributed computing. Dean and Ghemawat were also central figures in the development of BigTable, a semi-structured data storage system designed for flexibility and high performance while scaling to petabytes of data across thousands of commodity servers. BigTable underpins a variety of Google products and services, including web indexing, Google Earth, and Google Finance. Along the way, Dean also contributed to the development and implementation of Google News, Google Translate, and a variety of other projects that enhanced Google’s data management, job scheduling, and code search infrastructure.

More recently, Dean has accelerated Google’s leadership in artificial intelligence as co-founder of the Google Brain team focused on the fundamental science of machine learning as well as projects aimed at infusing the company’s products with the latest developments in the field. The team has been responsible for advancing the technology of deep learning and its impact on computer vision, speech, machine translation, natural language processing, and a variety of other applications. One of Dean’s crowning achievements in this area is TensorFlow, an open-source platform for the large-scale training and deployment of deep learning models. TensorFlow offered unprecedented flexibility to application developers and to support experimentation with novel training algorithms and optimizations. 

Dean is a Member of the National Academy of Engineering and a Fellow of both the ACM and the American Academy of Arts and Sciences. Together with his collaborator, Ghemawat, he earned the ACM SIGOPS Mark Weiser Award from the ACM’s Special Interest Group on Operating Systems in 2011 and the ACM–Infosys Foundation Award — now known as the ACM Prize in Computing, one of the highest honors bestowed by the organization — in 2012 for introducing revolutionary software infrastructure that advanced internet-scale computing.

Congratulations to Michael, Thomas and Jeff! 

Read more →

Allen School student Tal August earns Twitch Fellowship to make conversation in online communities more supportive and vibrant

Tal August, a Ph.D. student working with Allen School professors Katharina Reinecke and Noah Smith, has been named a 2021 Twitch Research Fellow for his work in creating writing tools to accommodate different online audiences. His current research focuses on strategies used to help moderate these communities in order to shape them into vibrant, supportive, online spaces.

August is one of five Twitch Fellows selected and aims to use his Fellowship to automate tools that support conversations in domains like science communication and in online communities like Twitch and Reddit. 

“Online communities can be such vibrant places, and that is often reflected in their language,” he said. “The goal of this work is to build tools that tap into the language of a community, guiding newcomers and moderators to communicate more effectively.” 

Using LabintheWild, a site that tests people’s abilities and preferences so that researchers can improve users’ experience when interacting with technology, August studied the effects of language styles that influence user behavior. This led to his work on building writing tools tailoring language to better engage different audiences.

Currently, most tools for online moderation are used for policing posts to eliminate profanity and toxic behavior. August aims to make moderation tools more welcoming. Working at the intersection of human computer interaction (HCI) and natural language processing (NLP), he has found that newcomers in online communities face barriers by not understanding the norms of the community. Based on his research, he will create tools to identify ways for moderators to encourage positive contributions for more inclusive engagement and discourse. 

With the help of machine learning, August’s tool will analyze newcomer remarks and moderator responses in order to suggest responses that are more likely to encourage future positive contributions by the newcomer. Many online forums list rules or frequently asked questions for new users to read before engaging in the conversation. August would build a separate tool to arm newcomers with more information by giving them just-in-time recommendations for making positive posts.

“Tal’s research at the intersection of HCI and NLP will help encourage more positive and thoughtful conversations in online communities such as Twitch,” Reinecke said.

August’s tools will be open-sourced for moderators to use in their online communities. They will help them respond to newcomers in a more meaningful way and foster a more welcoming online space for everyone. 

In addition to his Twitch Fellowship, August received a University of Washington Endowed Fellowship in Computer Science and Engineering in 2018 and has published nine refereed conference papers, including the Conference on Empirical Methods in Natural Language Processing and the Association of Computing Machinery’s Conference on Human Factors in Computing Systems. In addition to being a student and researcher, he is a teaching assistant for NLP and HCI capstone classes. 

Congratulations, Tal! 

Read more →

Computing Research Association recognizes undergraduates advancing data science for mental health, commonsense reasoning, mobile health sensing, and more

Joy He-Yueya applies data science techniques to measures of patient behavior to assess how they might predict the onset of schizophrenia symptoms. Meanwhile, Ximing Lu uses machine learning to improve cancer diagnosis and explores how neural language models can advance commonsense reasoning. Parker Ruth builds mobile sensing systems to detect and monitor a variety of health conditions, while Jenny Liang develops programming techniques to support developer education and collaboration. And Emily Bascom contributes to research aimed at promoting user privacy and improving patient care.

For producing results with the potential for real-world impact, each of these University of Washington students — three nominated by the Allen School, two by the Information School — recently earned national recognition as part of the Computing Research Association’s 2021 Outstanding Undergraduate Researcher Awards. Each year, the CRA competition highlights a select group of undergraduates at universities and colleges across North America who are already advancing the field of computing and making an impact through their work. The achievements of the five outstanding student researchers honored in this year’s competition are a testament to UW’s commitment to undergraduate research; they are also proof that it’s never too early to begin using computing in the service of social good.

Joy He-Yueya (Awardee – Allen School)

Joy He-Yueya portrait

CRA award recipient Joy He-Yueya is a senior majoring in computer science in the Allen School who has engaged in a variety of research projects related to health and education. Last year, He-Yueya began working with professor Tim Althoff, leader of the Allen School’s Behavioral Data Science Group, and UW Medicine faculty Benjamin Buck and Dror Ben-Zeev on a project seeking to mine the vast quantities of data generated by passively sensed measures of behavioral stability to support mental health. Their goal was to use  data science techniques to understand the relationship between patients’ routines and the onset of schizophrenia symptoms. He-Yueya, who took the lead on data preparation, analysis and visualization as well as algorithmic development for the project, was first author of the paper describing the team’s findings that recently appeared in the journal npj Schizophrenia

“What sets Joy apart as a student researcher is her independence to lead a research project herself and to collaborate with clinical researchers to connect innovations in computing and measurement to clinical goals,” said Althoff. “She was also very impressive at handling the complexity of a project that involved significant experimentation and seeing a project through from the first ideas to writing and to publication.”

He-Yueya recently contributed to a project at the Max Planck Institute for Software Systems in Saarbrücken, Germany that applies reinforcement learning to generate personalized curricula for students learning to code. She also has been working with researchers at Seattle-based Giving Tech Labs to develop methods for identifying relationships between voice and emotions and between voice and aging. In addition to her research, He-Yueya has served as a teaching assistant for the Allen School’s Introduction to Algorithms and Data Structures and Parallelism courses and has volunteered her time to a number of tutoring and peer mentoring roles — including leading workshops to help her fellow undergraduates get their own start in research.

He-Yueya’s entrée to academic research was working with iSchool professor Katie Davis in the Digital Youth Lab, where she focused on digital incentives for students to pursue science and engineering-related education. She earned a Mary Gates Research Scholarship from UW last year for her work. He-Yueya plans to pursue a Ph.D. following her graduation from the Allen School next spring.

Ximing Lu (Runner-up – Allen School)

Ximing Lu portrait

Ximing Lu, who is majoring in computer science and statistics, was named a runner-up in the CRA competition for her work in machine learning and natural language processing. In less than three years, Lu has contributed to four major papers in submission — three of them as lead author. Her first foray into undergraduate research was working on a project with professor Linda Shapiro, who holds a joint appointment in the Allen School and Department of Electrical & Computer Engineering, that applies machine learning to improve the speed and accuracy of breast cancer diagnosis by reducing the uncertainty that stems from subjective human interpretation. The system they designed, Holistic ATtention Network (HATNet), is capable of learning representations from clinically relevant tissue structures without explicit supervision to classify gigapixel-sized biopsy images with the same level of accuracy as human pathologists.

Since last year, Lu has collaborated with Allen School professor Yejin Choi and colleagues in the Allen Institute for AI’s MOSAIC group on multiple projects seeking to advance the state of the art in natural language processing and visual commonsense reasoning. Among Lu’s contributions is TuBERT, a new multi-modal neural network capable of commonsense reasoning about the temporal relationship between visual events using a combination of YouTube video content and clues from their accompanying text narratives. Since its introduction, TuBERT has achieved state-of-the-art results on multiple commonsense reasoning tasks by outperforming substantially larger, commercially funded neural networks. Lu has also worked on Reflective Decoding, an approach for enabling pre-trained language models to complete paraphrasing and abductive text-infilling tasks without supervision, and the NeuroLogic decoding algorithm for controlling neural text generation models through logical constraints.

“Ximing is one of the most creative and innovatives undergraduate students I have had the pleasure to work with,” said Choi. “She has an impressive ability to rapidly synthesize new technical ideas based on seemingly disconnected pieces. Everyone in my lab has been eager to collaborate with her.”

Last fall, Lu received the Lisa Simonyi Prize honoring an Allen School student who exemplifies excellence, leadership and diversity. She was also named a Levinson Emerging Scholar by the UW in recognition of her accomplishments in research. After graduation, Lu plans to continue her studies next fall as a student in the Allen School’s fifth-year master’s program.

Parker Ruth (Finalist – Allen School)

Parker Ruth portrait

Parker Ruth, a computer engineering and bioengineering major advised by professor Shwetak Patel in the Allen School’s UbiComp Lab, was named a finalist by CRA for his cross-disciplinary work on mobile health sensing technologies and computational tools for supporting population health. During his more than three years as an undergraduate researcher, Ruth has contributed to multiple projects aimed at enabling early identification and monitoring of symptoms and risk factors associated with a variety of  medical conditions. His efforts have included the development of non-invasive, smartphone-based tools for measuring bone density to screen for osteoporosis, tracking cardiovascular disease through real-time measurement of pulse transit time, and detecting cough to facilitate diagnosis and monitoring of respiratory illness.

Most recently, Ruth has led the design of a smartphone-based exercise sensing system that employs ultrasonic sonar to measure physical activity as part of the Exercise Rx initiative in collaboration with The Sports Institute at UW Medicine. He is also developing algorithms to screen for risk of stroke by measuring blood flow in videos of the face. In addition, Ruth has contributed to the development of a wearable pulse sensing system for detecting a rare but serious cardiovascular condition known as postural orthostatic tachycardia syndrome. In response to the current pandemic, Ruth has worked on environmental sampling and viral detection protocols for screening air filtration systems in public transit and, in collaboration with bioengineering professor Barry Lutz, built image processing software that powers a smartphone-based tool for streamlining molecular assays for the virus in order to speed up diagnosis.

“Parker is advancing how we think about digital health and how commodity devices can play a role in democratizing health care and increasing access for everyone. He has demonstrated unprecedented work ethic, creativity, rigor, and an unique ability to present his work to a general audience,” said Patel. “He already shows the maturity of a graduate student and the capacity to define broad research agendas. On top of that, he is the most humble and selfless person you will ever meet.”

Ruth previously was named a Goldwater Scholar and recognized as a member of the Husky 100. He is a student in the University’s Interdisciplinary Honors Program and Lavin Entrepreneurship Honors Program and has been active in outreach to K-12 students, including helping to oversee the UbiComp Lab’s high school mentorship program.

Jenny Liang (Honorable Mention – iSchool)

Jenny Liang portrait

Jenny Liang is well-known to the Allen School community, as she majors in both computer science and informatics. Her research spans software engineering, human-computer interaction, and applied machine learning. Liang earned an Honorable Mention from the CRA for her work with iSchool professor and Allen School adjunct professor Amy Ko in the Code & Cognition Lab

Liang collaborated with Ko and partners at George Mason University on the development of HowTooDev, a searchable knowledge base of strategies for solving hard programming problems that has the potential to transform programmer productivity and reshape computer science education. Liang’s contributions to the project included the development and testing of multiple search-interface prototypes and a classification ​system for​ various programming activities. She combined the latter with semantic text search that leverages natural-language strategy notations to build the front and back end of a robust strategy search engine.

“Jenny is a force,” said Ko. “She is the kind of force that we don’t find often in academia — the kind that pushes the boundaries of our knowledge, and leads.”

Previously, Liang worked with postdoc Spencer Sevilla and professor Kurtis Heimerl in the Allen School’s Information and Communication Technology for Development (ICTD) Lab on the development of LTE-based community-owned networks to connect rural and developing communities to the internet. Liang co-authored a paper presenting the team’s solution, dubbed CoLTE, that appeared at the 25th International Conference on Mobile Computing and Networking (Mobicom 2019). The recipient of the 2020 Allen AI Outstanding Engineer Scholarship for Women and Underrepresented Minorities, since last summer Liang has been an intern with AI2’s MOSAIC team working on toxic language classification. She previously was honored with the Allen School’s Undergraduate Service Award and recognized as a member of the 2020 class of the Husky 100.

Emily Bascom (Honorable Mention – iSchool)

Emily Bascom portrait

Informatics major Emily Bascom earned an Honorable Mention from CRA for her work on user privacy and information technology tools for improving patient outcomes. Bascom, who is pursuing a concentration in human-computer interaction, spent two years working with iSchool professor Alexis Hiniker in the User Empowerment Lab. There, she focused on a project examining the privacy risks associated with ubiquitous audio recording capabilities of smartphones, smart speakers, and other devices. Her contributions included helping to design the study protocol, leading design workshops with study participants, and analyzing data generated by design sessions and interviews. 

“It was apparent throughout the project that Emily is a very talented scholar with an exciting career ahead of her,” said Hiniker, who is also an adjunct professor in the Allen School. “Her design insights and intellectual contributions far exceeded my expectations, and I can’t wait to see her translate those kinds of contributions into social change in the future.”

Bascom also collaborated with iSchool professor Wanda Pratt in the iMed research group on a project to understand how best to support patients and caregivers in acting as safeguards for hospital care — including improving communication between providers and patients to reduce medical errors. The researchers developed a tool, NURI, that enables patients and caregivers to record audio and semi-automatically transcribe their interactions with physicians and help them to understand the information they were given during those interactions. Bascom’s contributions included qualitative analysis of the user studies and preparation of the manuscript detailing the team’s findings and related work. She subsequently contributed to all aspects of a project led by Dr. Ari Pollack of UW Medicine and Seattle Children’s Hospital to develop tools to support pediatric kidney transplant patients, including protocol development, qualitative data analysis, and manuscript preparation.

Read more about Liang’s and Bascom’s work in a related iSchool story here.

Congratulations to these five exceptional researchers on their achievements!

Read more →

Allen School alumnus Aditya Vashistha recognized for his work in computing for social good

Allen School alumnus Aditya Vashistha (Ph.D., ‘19) received the 2020-2021 WAGS/ProQuest Innovation in Technology Award from the Western Association of Graduate Schools for his doctoral dissertation on “Social Computing for Social Good in Low-Resource Environments.” The award recognizes a graduate thesis or dissertation that presents an innovative technology with a creative solution to a significant problem.

Vashistha, now a computing and information science professor at Cornell University, completed his Ph.D. working with professor Richard Anderson in the Information & Communication Technology for Development (ICTD) Lab on social computing technologies for underserved communities in low-resource environments. His dissertation focused on designing, building and evaluating new computer technologies to include people who are often excluded from social computing platforms because they are too poor to afford smartphones, too remote to access the internet or too low-literate to navigate all the text on the internet. 

“Being born and raised in India where illiteracy, poverty, and social ills were just a stone’s throw away, I witnessed how non-reading people, low-income women, and people with disabilities struggled with digital inequity and social injustice,” Vashistha said. “These experiences have profoundly motivated me to build computing technologies that include people of all backgrounds in the information revolution, particularly marginalized communities who are often neglected by the designers and builders of mainstream technologies.”

The first step in his journey began while working with Bill Thies of Microsoft India. Vashistha created IVR Junction, a system that uses interactive voice response (IVR) technology to enable people with basic phones to participate in voice-based social networks. Deployed in remote regions of Somalia, Mali and India, IVR Junction gave communities a way to share news, call attention to rights violations and report lack of services. Given the explosive growth of these systems, Vashistha then focused on Sangeet Swara, an interactive voice forum that enables people in these rural areas to moderate and manage the content generated in local languages which are yet unsupported by advances in natural language processing. The paper presenting Sangeet Swara earned a Best Paper Award at the 2015 ACM Conference on Human Factors in Computing Systems. Vashistha subsequently earned an Honorable Mention at the CHI 2017 for his work on Respeak, a voice-based speech transcription that relies on crowd-sourcing and speech recognition to transcribe audio files while providing additional earning opportunities to low-literate people without access to smartphones and internet connectivity. 

In addition to building voice forums for all people, Vashistha studied how technology amplifies existing sociocultural norms and values in society, including its strengths, shortcomings and biases. For example, he found that while Sangeet Swara transformed the lives of low-income blind people in rural regions, it also exposed that women who were marginalized due to patriarchy-driven abuse and hate speech. His dissertation advances the discourse on the benefits and pitfalls of social computing, highlights new challenges and big frontiers in building social good applications in low-resource environments, and offers solutions to make computing technologies more diverse, inclusive, and impactful. 

In addition to the WAGS/ProQuest recognition, Vashsitha received multiple accolades for his work, including the Allen School’s William Chan Memorial Dissertation Award in 2019, a 2020 Google Faculty Research Award  to combat online harassment of marginalized women using human-centered artificial intelligence approaches, the UW College of Engineering’s 2017 Graduate Student Research Award, a Facebook Graduate Fellowship in 2016, and a Best Student Paper award at ASSETS 2015 for his analysis of social media use by low-income blind people in India. 

Previous recipients with an Allen School connection include Vamsi Talla in 2017, advised by professor Shyam Gollakota, Sidhant Gupta in 2015, advised by professor Shwetak Patel and Tapan Parikh in 2009, advised by professor Ed Lazowska and emeritus professor David Notkin.

Congratulations, Aditya! 

Read more →

Six Allen School undergraduates recognized for excellence in research

The University of Washington’s Undergraduate Research Program has recognized six Allen School students for excelling in their area of research. Skyler Hallinan, Raida Karim and Ximing Lu were selected as Levinson Emerging Scholars and Jerry Cao, Jakub Filipek and Millicent Li were named Washington Research Foundation (WRF) Fellows.

Both the Levinson Scholars, funded by Art (UW ‘72) and Rita Levinson, and the WRF Fellows are chosen for their innovative research in bioscience and other related fields. The scholarships will enable them to pursue their projects while continuing to be supported by their mentors and lab colleagues. 

Skyler Hallinan

Hallinan is a senior majoring in computer science, bioengineering, and applied and computational mathematical sciences. He works with bioengineering professor Paul Yager.

Hallinan’s research focuses on combating chronic kidney disease (CKD), a disease that affects millions globally. People with CKD often accumulate indoxyl sulfate, a uremic toxin normally filtered out by healthy kidneys, which can cause major illness and lead to death. Hallinan is working to develop a method to effectively remove indoxyl sulfate from CKD patients’ blood via an orally ingestible hydrogel. He is currently modeling, prototyping and testing different candidate hydrogels to engineer a substitute for a functional kidney.

Raida Karim

Karim is a senior studying computer science, working with Allen School professor Maya Cakmak in the Human-Centered Robotics Lab

Karim’s research focuses on measuring stress levels in teens and creating therapeutic, intervening techniques for them with a social robot called EMAR (Ecological Momentary Assessment Robot). Using EMAR, Karim collects stress level measurement data from high school students, and offers interventions that draw from dialectic behavioral therapy and acceptance and commitment therapy. Through this robot interaction experience, Karim aims to help teens be more mindful and present in the moment while developing a robot with a heightened level of sensitivity.

Ximing Lu

Lu is a computer science and statistics major working with professor Linda Shapiro, who holds a joint appointment in the Allen School and Department of Electrical & Computer Engineering, and with Allen School professor Yejin Choi as a research intern at the Allen Institute for AI

Lu’s current research with Choi centers around natural language processing and commonsense reasoning. With Shapiro, she focuses on creating a computer-aided biopsy classification system to reduce cancer diagnosis uncertainties. The system, HATNet: An End-to-End Holistic Attention Network for Diagnosis of Cancer Biopsy Images, streamlines the histopathological image classification pipeline and shows how to learn representations from gigapixel size images end-to-end. HATNet can learn representations from clinically relevant tissue structures and match the classification accuracy of pathologists.

Jerry Cao

Cao is a junior studying computer science and is in the University’s Honors Program. He works with Allen School professors Jennifer Mankoff in the Make4all Lab and Shwetak Patel in the Ubiquitous Computing Lab

Cao is currently working on the development of a non-invasive, continuous blood pressure monitor to help patients with cardiovascular conditions. In particular, his work aims to help people with postural orthostatic tachycardia syndrome (POTS), a condition where the body cannot properly regulate blood vessels that causes lightheadedness, fainting, and spikes in heart rate. The device will collect the pulse transit time (PTT), the time for a pulse wave to travel between two points. PTT correlates with blood pressure, which is a known predictor of adverse POTS symptoms. In addition to helping predict symptoms, the device will also provide physicians with a dataset that will make conditions like POTS easier to diagnose.

Jakup Filipek

Filipek is a senior computer science major enrolled in the Allen School’s B.S./M.S. program. He works with physics professor Shih-Chieh Hsu.

Filipek’s research is in quantum machine learning (QML). Quantum computers have the potential to produce results in simple artificial intelligence algorithms to sophisticated neural networks better than their classical counterparts. However, these models are dealing with the bottleneck issue of a limited number of quidbits (the basic unit of quantum information) in near-term quantum devices. FIlipek is working on a hybrid neural network that functions by sandwiching any QML algorithm between two classical neural networks. This allows for automatic scaling of quantum algorithms to inputs and outputs of any size, addressing the bottleneck issue while provisioning an easy way of comparing classical algorithms to quantum ones.

Millicent Li

Li is a senior in computer science working with Patel in the Ubiquitous Computing Lab. 

Li’s research is in improving the communication abilities of people with speech impairments by developing a silent speech interface that can facilitate communication between two people or with smart devices by outputting speech that is imagined but not spoken. Li aims to use a combination of neural signals from the brain to sense the user’s intent in their day-to-day lives and to provide speech accordingly, without the need of facial movement, by using optical signals like functional near-infrared spectroscopy and electrical signals like electroencephalogram.

Congratulations to these outstanding Allen School scholars who are making an impact through undergraduate research! 

Read more →

Q++ co-chair Joe Spaniac focuses on building community as a vital part of the college experience

Joe Spaniac

Our latest undergraduate student spotlight features Sammamish, Washington native Joe Spaniac, a second year computer science major admitted under the Allen School’s expanded Direct to Major admission pathway who is also majoring in drama. During his first quarter at the Allen School, he knew he wanted to be a part of Q++, a student organization for LGBTQIA+ members studying in the Allen School. He has served as a member of the board since then and currently co-chairs the group with Lavinia Dunagan. Despite the challenges of meeting and holding events virtually this year, Spaniac enjoys being a part of the group and all that it does for students in the Allen School.

Allen School: What is the mission of Q++?

Joe Spaniac: Overall, our mission with Q++ is to raise awareness of the issues that LGBTQIA+ members face in the field of computer science and provide a place that anyone and everyone can feel welcome and supported regardless of gender expression or sexual orientation. This year especially, we are really focused on the second half of that mission statement due to the many social challenges that come with, seemingly, an entirely online school year. Very frequently, members of the community really look forward to the typical “college experience” as an opportunity to reinvent themselves and sometimes even escape households that might not accept them as their true selves. Although Q++ may not be able to entirely replace this experience, we hope to be a good intermediate option while we all wait for things to return to normal.

Allen School: Why do you think it’s important to have an organization like Q++ at the Allen School?

JS: Speaking from personal experience, the UW is massive, and it’s very easy to feel lost and isolated without supportive friends. For this reason, social organizations like Q++ are vital in providing students, especially ones that might struggle to immediately befriend a group of peers, a community. Additionally, Q++ has the potential to amplify and empower the voices of many LGBTQIA+ students within the Allen School itself. As a group, we can help advocate for meaningful changes that have the potential to better the student experience in the school for years to come. Together, there’s the added benefit that if someone is struggling, someone else in Q++ has likely faced a similar issue before. In this way, we can help guide each other through many of the common challenges we might experience at the UW.

Allen School: Why did you choose to major in computer science?

JS: I took my first computer science class my junior year of high school and from then on, I was hooked. When I was programming, however cliché it might sound, things seemed to click. I found that I wanted to continue coding after school, and sometimes looked forward to the homework assignments. Having never experienced this level of enthusiasm for any of my other studies, I thought that it had to mean something, so I applied to the Allen School. Now, having more knowledge about the field as a whole, I’ve decided to continue studying computer science because of how widespread software is. These days it seems like everything relies on computers and programming, meaning the opportunity is there to contribute to something that positively impacts the lives of people all around the world. I truly hope that by pursuing an education in computer science, I’ll get one of those opportunities to make a meaningful mark.

Allen School: What do you find most enjoyable about being an Allen School student? 

JS: Personally, although there’s a whole lot that I’ve really enjoyed about being an Allen School student so far, I think that the overall community I’ve interacted with has really been the highlight. From Discord study groups to my grading parties with my fellow teaching assistants, everyone I’ve met has been open, welcoming, and more than willing to help you out if you get stuck on a tricky 311 proof. At the same time, the wealth of opportunities available at the Allen School makes being a student here all the better. As I mentioned above, I’m currently an undergraduate TA but I know people who are exploring research opportunities, participating in hack-a-thons, and contributing to codebases or working on personal projects. No matter what, there is always something to do at the Allen School if you take the time to look for it!

Another great thing about the school is that although I am studying computer science, the flexibility of the major has also allowed me to explore another of my passions: theatre. Even though there are many challenges with being a double degree student, I’m extremely grateful that I’ve been able to study two wildly different fields while at the UW.

Allen School: Who or what inspires you in the Allen School?

JS: This year especially, I think the resilience and perseverance of everyone in the Allen School is extremely inspiring. Sure, there have been issues and we’ve all faltered at some point, but the fact that everyone has worked through all the adversity that has surrounded this quarter is insanely impressive. Both the faculty and student body deserve some praise for how many adaptations have been made to make this quarter as normal as possible.

I also mentioned them earlier, but the TA community has been another force of inspiration throughout my time here in the Allen School. I’ve met countless peers who all share my passion for educating and spreading our knowledge of programming to fellow undergraduates, many of whom have no prior coding experience. The fact that so many within the Allen School are more than happy to share their understanding and unique perspective of computer science never ceases to amaze me and keeps me coming back quarter after quarter.

Thank you for your leadership and for supporting your fellow Allen School students in and out of the virtual classroom, Joe! 

Read more →

“You are not a drop in the ocean, you are the entire ocean in a drop”: New Allen School scholarship will turn a family’s loss into students’ dreams fulfilled

Leo Maddox Schneider smiling under a multi-colored canopy against a vivid blue sky
Leo Maddox Schneider: July 7, 2005 – January 12, 2019

As a student at Seattle’s Hamilton International Middle School, Leo Maddox Schneider demonstrated early mastery of mathematics and languages, was an avid gamer and athlete, and carved out a reputation as a budding conservationist. Enthusiastic about learning from an early age, Leo had already taken to heart his mother Sylvia Bolton’s advice to find something that he loved and was passionate about and to make that his profession. As she relayed to her son at the time, “it will bring fulfillment and a lot of happiness.”

What Leo loved was computer coding and Lego design; what he was passionate about were environmental causes. He might have pursued both at the University of Washington if not for the injuries he sustained in an automobile accident. Four and a half months later, on January 12, 2019, Leo passed away from those injuries and related complications. Nearly two years after that tragic loss, the foundation established by Leo’s mother to honor her son’s memory will give Allen School students the opportunity to fulfill their own dreams and carry on his legacy through the Leo Maddox Foundation Scholarship in Computer Science & Engineering.

”Leo loved computer science,” Bolton explained. “He and his friend Lennox shared a dream of attending a university that excelled in computer science so they could build their own company and make a difference in the world.”

Even at the tender age of 13, Leo was already well on his way toward making that difference. He forged enduring friendships with Lennox and Judson while playing Minecraft and Fortnite, which helped spark his interest in coding. He was already three years ahead of his grade level in mathematics and conversant in both Spanish and Bulgarian. His enthusiasm for the outdoors led Leo to champion environmental causes; he once convinced his mother to enter into one of their “non-negotiable” agreements permitting him to collect garbage for recycling. (Another of their non-negotiable agreements stipulated that he would eat his vegetables at dinner.) Leo was particularly passionate about the ocean, learning to swim with dolphins and developing a love of boat building craftsmanship inspired in part by his mother’s work as a luxury yacht designer.

“Everyone knew Leo as having a big, sweet soul and people just loved him. Losing him turned our world upside down into complete darkness,” recalled Bolton. “But we do not want the tragedy of Leo’s passing to define him. Leo was and will always be remembered as the smart, kind and compassionate kid who was gifted at math and science, loved the outdoors, and was a friend to many. With so much life ahead of him.”

To that end, Bolton established the Leo Maddox Foundation as a way to ensure that Leo’s legacy and aspirations for the future would live on in others. The Foundation supports a variety of initiatives designed to help promising young students with financial need to fully achieve their academic and creative potential, from assisting Rainier Scholars to go to college, to “Love, Leo” genius grants inspired by their namesake’s creative, can-do approach to solving problems he saw in the world. The new Leo Maddox Foundation Scholarship in Computer Science & Engineering will support Allen School undergraduate students in covering the cost of tuition and other educational expenses based on academic merit and financial need.

UW Huskies football player makes the "Dubs up!" sign with his fingers, with his arm around Leo Maddox Schneider

“We are heartbroken that Leo will never get the chance to apply to the Allen School and our hearts and prayers are with his family. We are deeply appreciative of the scholarship established by the Foundation in his name,” said professor Magdalena Balazinska, director of the Allen School. “This scholarship will touch many lives. It will promote the success of many talented students who need support to fulfill their dreams.”

In deference to her son’s twin loves, in addition to the Allen School scholarship Bolton also created the Leo Maddox Foundation Scholarship in Oceanography to support students in the School of Oceanography engaged in climate-related studies. The university’s preeminence in both disciplines and focus on student support convinced the Foundation to entrust it with Leo’s memory.

“As important as it is for the Leo Maddox Foundation to support young adults, it is equally important that we do so with the leaders in both fields,” said Vivian Ho, creator of the Leo Maddox Foundation. “In conducting our due diligence, it was clear that the University of Washington had a lot to offer in both areas of study and in shaping support for student scholarships. They created the perfect vehicles for our founder, Sylvia Bolton, to make the impactful difference she was seeking for Leo’s legacy.”

Learn more about the Leo Maddox Foundation Scholarships here and Leo’s life and legacy here.

Read more →

« Newer PostsOlder Posts »