Skip to main content

UW raises its profile as a center of computer engineering education and research

UW Electrical & Computer Engineering building reflected in Drumheller FountainThe University of Washington has announced that the Department of Electrical Engineering (EE) is changing its name to the Department of Electrical & Computer Engineering (ECE). This name change updates the identity of one of the Allen School’s closest campus collaborators to better reflect their current teaching and research — and the growth of interest by electrical engineering students in embedded systems and other hardware-related research. The change from EE to ECE is a natural outgrowth of the evolution of the field and a reflection of the longtime partnership between the former EE department and the Paul G. Allen School of Computer Science & Engineering.

“ECE and the Allen School have a long history of collaboration when it comes to research and teaching that spans the boundary between computing and electrical engineering,” said Hank Levy, director of the Allen School and Wissner-Slivka Chair in Computer Science & Engineering. “This name change recognizes UW’s strength at the intersection of these two exciting fields, where students, faculty and alumni of both programs are shaping the future of hardware innovation and doing extraordinary work in sensors, wireless, chip design, and more.”

Eleven years ago, the two programs created the UW Experimental Computer Engineering Lab (ExCEL), an initiative to facilitate the recruitment of faculty and interdisciplinary collaboration at the intersection of their fields. The result was the hiring of outstanding joint faculty who are driving innovation at the nexus of computing and electrical engineering, including Shwetak Patel in sensing systems for energy and health, Georg Seelig in synthetic biology, Linda Shapiro in computer vision for medical applications, Joshua Smith in wireless-power and zero-power devices, and Michael Taylor in microprocessors, ASICs, and hardware design. By minimizing the barriers at the boundary of their programs, the Allen School and ECE are enabling students to participate in high-impact, cross-cutting computer engineering research.

“These top caliber faculty have attracted sought-after graduate students, which feeds the cycle of excellence, and we believe our new name will only strengthen such recruitment efforts,” said ECE chair Radha Poovendran. “The field of electrical and computer engineering has produced inventions that have changed the world and the way we live. As our department begins a new era, the opportunities for impact are endless.”

The change in name to ECE has no impact on degrees granted. The Allen School will continue to award UW’s degrees in Computer Science and Computer Engineering, while ECE will continue to award UW’s Electrical Engineering degree.

Read the ECE announcement here.

Photo by Kathleen B. Turner/University of Washington

 

September 18, 2018

Rajalakshmi Nandakumar is living the dream as GeekWire’s Geek of the Week

View of Rajalakshmi Nandakumar's workspace from above, with laptop, monitors, and several smartphones

Nandakumar’s workspace, including the collection of smartphones used in her research.

Allen School Ph.D. student Rajalakshmi Nandakumar’s research has awakened a lot of interest in how mobile devices can be used to improve health and quality of life, from detecting signs of sleep apnea to alerting emergency services of a drug overdose.

Fresh off her selection as a Paul Baran Young Scholar by the Marconi Society, Nandakumar is featured in the latest edition of GeekWire’s Geek of the Week. In addition to fielding questions about her favorite Star Trek captain (Kirk), her favorite gadget (3D printer), and other suitably geeky pursuits, Nandakumar explained to GeekWire what motivates her to push the boundaries of what a smartphone can do.

“Often people associate wireless signals with communication,” she noted. “Though it is the primary purpose, these wireless signals we are surrounded with can also be used to enable novel applications in other domains like healthcare, human computer interaction and security.”

Check out the full article here, and read more about Nandakumar’s Young Scholar Award here.

Way to go, Rajalakshmi!

Photo by Mark Stone/University of Washington

 

September 14, 2018

Rajalakshmi Nandakumar honored with Marconi Young Scholar Award

Rajalakshmi Nandakumar

Allen School Ph.D. student Rajalakshmi Nandakumar has been recognized with a Paul Baran Young Scholar Award from the Marconi Society for her work on mobile apps capable of detecting potentially life-threatening health issues. She is the first Allen School student to receive the award, which honors outstanding early-career researchers in wireless communications and the internet. Young Scholars are selected by an international panel of engineers from industry and academia. According to internet pioneer and Marconi Society Chairman Vinton Cerf, Nandakumar represents those qualities that the organization aims to promote through the program.

“Our Young Scholar award attracts the world’s brightest young communications researchers,” he said. “Rajalakshmi embodies every characteristic that we seek—unparalleled intellectual capability, entrepreneurial spirit, and the vision to use her work to better humankind.”

Nandakumar is a researcher in the Allen School’s Networks & Mobile Systems Lab, where she works with professor Shyam Gollakota on a range of projects that leverage the increasingly sophisticated sensing capabilities of smart devices to improve health and quality of life.

Rajalakshmi Nandakumar using mobile app

“Rajalakshmi has a knack for selecting problems with high social impact,” observed Gollakota. “What’s incredible is that she has developed technology that seems like science fiction and has gotten it adopted by hundreds of thousands of people in the real world.”

Gollakota is referring to ApneaApp, a contactless smartphone app that Nandakumar developed to measure minute changes in a person’s respiration and movement during sleep. The app analyzes those measurements to detect whether a person is suffering from sleep apnea, a breathing disorder that affects more than 18 million adults in the United States alone. The condition often goes undiagnosed, as the usual methods of identifying sleep apnea involve either an expensive polysomnography test requiring an overnight stay in a hospital or sleep clinic, or the use of in-home systems that tend to have high failure rates. Taking inspiration from how bats navigate, Nandakumar turned a smartphone into an active sonar system that can be used to monitor an individual’s sleep from the comfort of their own bedroom, without any special instrumentation.

Nandakumar’s work on ApneaApp earned her the UW CoMotion Graduate Innovator Award in 2016. The technology, which was developed in collaboration with Dr. Nathaniel Watson of the UW Medicine Sleep Clinic, was subsequently licensed by ResMed, a global leader in the sleep industry. The company built the capability into its SleepScore app released earlier this summer to enable individuals to track their sleep quality and share data with their physicians.

Nandakumar chose to focus on mobile apps for health based on her experience growing up in India with a father in the healthcare industry, which exposed her to many of the issues she is trying to address through her research. She also liked the idea of working on projects that have far-reaching impact outside of the lab.

Shyam Gollakota and Rajalakshmi Nandakumar“The best part of my work is seeing real people using my technology and knowing that it benefits their well-being,” Nandakumar told the Marconi Society. “As a computer scientist, I find that very fulfilling.”

Nandakumar has since turned her attention to another pressing public health issue: the opioid epidemic. For her latest project, she is exploring how to use a smartphone and sonar to monitor a person’s condition and summon help in the event of an overdose. Around 100 people in the United States die each day from opioid use. It will be the latest in a line of projects that have sought to extend the capabilities of mobile devices beyond mere communication.

“It is rare for a graduate student to have such impact with even one application, and she is doing it time and again,” Gollakota said.

Nandakumar and her three fellow Young Scholar recipients will be formally recognized next month at the Marconi Society’s symposium in Bologna, Italy.

Read the Marconi Society’s press release recognizing Nandakumar here and the full award announcement here. Learn more about the Young Scholars program here.

Congratulations, Rajalakshmi!

Photos by Mark Stone/University of Washington

 

September 11, 2018

Thanks to the trades who are making the Gates Center a reality!

On a typical day nearly 150 tradesmen and tradeswomen are at work on the Bill & Melinda Gates Center for Computer Science & Engineering. Every day we marvel their amazing work, and periodically we demonstrate it with a bbq lunch and special recognition for some folks who have gone above and beyond in contributing to the great culture of the team.

Today’s event was particularly special: the first event held in the atrium of the Gates Center.

Thank you Mortenson and all your subs and their people – you’re the best! And thank you LMN for an incredible design.

 

 

 

 

 

 

 

 

 

August 30, 2018

Celebrating Seattle’s sweep of this year’s major awards in computer architecture

This afternoon we celebrated an unprecedented clean sweep of the major awards at the International Symposium on Computer Architecture.

Hadi Esmaeilzadeh, UW Paul G. Allen School Ph.D. alumnus and UCSD CSE faculty member, received the Young Computer Architect Award from the IEEE Technical Committee on Computer Architecture, given annually to an individual who has completed his/her Ph.D. degree within the last 6 years and has made one or more outstanding, innovative research contributions. Hadi was honored “in recognition of outstanding contributions to novel computer architectures in emerging domains, especially in machine learning and approximate computing.”

Gabe Loh, Fellow Design Engineer with AMD Research in Seattle, received the ACM SIGARCH Maurice Wilkes Award, given annually for an outstanding contribution to computer architecture made by an individual whose computer-related professional career started no earlier than 20 years prior to the year of the award. Gabe was honored “for outstanding contributions to the advancement of die-stacked architectures.”

Susan Eggers, UW Paul G. Allen School professor emerita, received the ACM/IEEE Computer Society Eckert-Mauchly Award, the computer architecture community’s most prestigious award. Susan was recognized “for outstanding contributions to simultaneous multithreaded processor architectures and multiprocessor sharing and coherency.”

Another indication of Seattle’s emergence as a center of information technology innovation.

August 21, 2018

Yin Tat Lee and Thomas Rothvoss honored for significant contributions in mathematical optimization

Yin Tat Lee and Thomas Rothvoss

Yin Tat Lee (left) and Thomas Rothvoss

Professors Yin Tat Lee and Thomas Rothvoss of the Allen School’s Theory of Computation group were recently recognized for significant contributions to the field of mathematical optimization. Lee, who joined the University of Washington faculty last year, received the A.W. Tucker Prize recognizing the best doctoral thesis in optimization in the past three years. Rothvoss, who holds a joint appointment in the Allen School and the Department of Mathematics, earned the Delbert Ray Fulkerson Prize recognizing outstanding papers in the area of discrete mathematics.

Lee received the Tucker Prize from the Mathematical Optimization Society for his thesis, “Faster Algorithms for Convex and Combinatorial Optimization,” completed while he was a Ph.D. student at MIT. In that paper, Lee explored how combining and improving upon existing optimization techniques such as sparsification, cutting, and collapsing could yield faster algorithms for solving a variety of problems underpinning the theory and practice of computer science. His research generated a number of substantial advancements, including faster algorithms for solving important problems in linear programming, convex programming, and maximum flow. Lee’s work was significant not only for its practical contributions, but also for its philosophical; whereas researchers historically have tended to study continuous optimization and combinatorial – or discrete – optimization in isolation, Lee recognized that the two areas share some difficulties and could benefit from some of the same techniques. His results earned him MIT’s George M. Sprowls Award for the best Ph.D. thesis in computer science in 2016.

Yin Tat Lee onstage holding his award certification, with Simge Kucukyavuz and Karen Aardal

Yin Tat Lee (left) onstage with Tucker Prize Committee chair Simge Kucukyavuz (center) and Karen Aardal, chair of the Mathematical Optimization Society

Lee’s paper was the culmination of several related lines of research that yielded faster algorithms for a variety of outstanding optimization problems — and yielded Lee and his collaborators numerous conference awards. These included Best Paper at the Symposium on Discrete Algorithms (SODA 2014) for presenting a new algorithm for approximately solving maximum flow problems in near-linear time, and Best Student Paper and Best Paper at the Symposium on Foundations of Computer Science (FOCS 2014) for a new general interior point method for solving general linear programs that represented the first significant improvement in the running time of linear programming in more than two decades. Lee and his colleagues subsequently earned Best Student Paper at FOCS 2015 for devising a faster cutting plane method for solving convex problems in near-cubic time.

Since his arrival at the Allen School, Lee has continued to push the state of the art, earning a CAREER Award from the National Science Foundation to further advance his efforts to develop faster, more efficient algorithms for solving convex and other optimization problems. He recently co-authored a total of six papers accepted at the Symposium on Theory of Computing (STOC 2018) — a record number of contributions from an individual researcher to the conference in a single year that addressed an array of open problems in algorithmic convex geometry, asymptotic geometric analysis, operator theory, convex optimization, online algorithms, and probability. Since last summer, he has served as co-principal investigator for the Algorithmic Foundations of Data Science Institute (ADSI), which is developing new algorithmic tools to advance the field of data science with a $1.5 million grant from NSF.

Rothvoss was recognized with the Fulkerson Prize, which is co-sponsored by the Mathematical Optimization Society and the American Mathematical Society, for his paper “The Matching Polytope has Exponential Extension Complexity.” In that work, he set out to answer an open question that is central to combinatorial optimization related to the expression of polytopes for solving linear programs. Whereas multiple authors had established that various polytopes have exponential extension complexity for NP-hard problems, Rothvoss was interested in finding out whether the same could be said for polytopes that admit polynomial time algorithms to optimize linear functions. He established that this is, indeed, the case for the perfect matching polytope — proving that linear programming cannot be used to solve the matching problem in polynomial time. It was a significant leap forward in theoreticians’ understanding of this topic, and one which revealed a significant limitation of a technique that has been extremely popular in the field of operations research.

Unnamed individual, Thomas Rothvoss, Karen Aardal, and William Cook

Thomas Rothvoss (second from left) onstage with (left to right) Fulkerson Prize Committee member Martin Grötschel, and chair Karen Aardal and vice chair William Cook of the Mathematical Optimization Society

Rothvoss was previously recognized with a Best Paper Award at STOC 2014 for the same work, which he conducted while he was a postdoctoral researcher at MIT. That same year, he collected a Best Paper Award at SODA 2014 for his contribution to a new algorithm for solving the bin packing problem in polynomial time. He previously earned Best Paper at STOC 2010 for his work on an approximation algorithm for solving the Steiner tree problem — a particularly important problem in the field of network design. More recently, Rothvoss earned a 2015 Sloan Research Fellowship and a 2016 Packard Fellowship for his work at the intersection of mathematics and computer science to develop new techniques for finding approximate solutions to computationally hard problems.

Last year, Rothvoss earned an NSF CAREER Award for his efforts to design new and better approximation algorithms to address several outstanding problems in combinatorial optimization, including the directed Steiner tree, graph coloring, unique games, and unrelated machine scheduling problems. The goal is to make it more efficient to extract value from vast quantities of data, which will benefit not only computer science but the broader scientific community and a variety of industries. Like Lee, Rothvoss has developed a keen interest in bridging the gap between discrete and continuous optimization, inspired by the emergence of machine learning and massive datasets that have opened up new lines of inquiry at the intersection of those two historically divergent fields. To that end, he co-organized a series of workshops last fall at the Simons Institute for the Theory of Computing that brought together researchers in both communities to stimulate interaction and collaboration on areas of shared interest.

Lee and Rothvoss collected their awards at the 23rd International Symposium on Mathematical Programming (ISMP 2018) last month in Bordeaux, France. ISMP, which is held every three years, is the flagship conference for researchers working in the field of mathematical optimization.

Congratulations, Thomas and Yin Tat!

 

August 3, 2018

With ApneaApp technology from the Allen School and UW Medicine, ResMed and SleepScore Labs awaken people to the dangers of poor sleep

Left to right: Nate Watson, Rajalakshmi Nandakumar, and Shyam Gollakota

The UW team behind ApneaApp, left to right: Nate Watson, Rajalakshmi Nandakumar, and Shyam Gollakota. Photo credit: Sarah McQuate/University of Washington

More than a billion people worldwide experience problems related to sleep, which can have a significant impact on their health, productivity, and overall quality of life. In the United States alone, an estimated 25 million people suffer from obstructive sleep apnea, a disorder in which a person’s breathing is repeatedly interrupted during sleep. If left untreated, sleep apnea can cause a variety of serious health issues, including hypertension, stroke, heart disease, diabetes, mood and memory problems, and more. Now, thanks to the ApneaApp technology from the University of Washington, people around the world can better understand their sleep in order to improve their health.

One of the barriers to identifying — let alone treating — apnea and other sleep-related issues has been a lack of useful data about the quality of people’s sleep. Clinical sleep studies such as the standard polysomnography test are time-consuming and expensive, while consumer sleep trackers often require the purchase of specialized hardware and can yield inaccurate or incomplete information about a person’s condition. In an attempt to put these issues to rest, Ph.D. student Rajalakshmi Nandakumar and professor Shyam Gollakota of the Allen School’s Networks & Mobile Systems Lab teamed up with Dr. Nathaniel Watson of the UW Medicine Sleep Center to create ApneaApp, which turns a smartphone into an active sonar system using the device’s built-in microphone and speakers to effectively track changes in a person’s breathing during sleep — without requiring specialized equipment or an overnight stay in a hospital or sleep clinic.

The technology behind ApneaApp was subsequently licensed by UW CoMotion to ResMed, a global leader in sleep technology and medical devices. The company forged a joint venture with SleepScore Labs to launch a new contactless sleep tracking app, the SleepScore mobile app, earlier this summer — putting the benefits of the ApneaApp technology into the hands of consumers for the first time.

“It is extremely gratifying to bring this research from the lab to the public,” Nandakumar, who was recognized with the CoMotion Graduate Innovator Award in 2016 for her work on ApneaApp, said in a press release.

The SleepScore app measures a person’s breathing by emitting inaudible sound waves from the phone. Those sound waves are then reflected back to it based on minute changes in the subject’s chest and abdominal movements. Using algorithms and signal processing techniques developed at UW, the app gauges from these reflections the subject’s stage of sleep, time to sleep, and number of awakenings throughout the night.

Michael Wren, senior director of ResMed Sensor Technologies, credited the UW researchers along with ResMed’s Ireland-based software developers and the team at SleepScore Labs for making it easy for anyone to quantify and improve their sleep. “To see and manage a key facet of your health with just your smartphone is an incredible advancement that I hope millions take advantage of,” he said.

In addition to analyzing a person’s sleep and producing a nightly SleepScore, the free version of the SleepScore app incorporates tools to support goal-setting and personalized recommendations. A premium version of the app offers additional features, including complete sleep history, analytics, and exportable data that the user can share with their physician.

“We are excited that ResMed licensed our research into transforming the smartphone into an active sonar system,” Gollakota said. “And now, through their joint venture with SleepScore Labs, they’ve launched a product that will help enable millions of people to better understand their sleep.

Read the UW CoMotion press release here, a related SleepScore Labs press release here, and the original UW News release on ApneaApp here. Download and try the SleepScore app here, and view a recent segment of The Dr. Oz Show featuring the app here.

 

July 30, 2018

With Ford grant, Taskar Center aims to expand the power of play for children of all abilities

Volunteers adapt toys at a hackathon on the University of Washington campusThe Allen School’s Taskar Center for Accessible Technology, working in partnership with the HuskyADAPT student organization at the University of Washington and the non-profit PROVAIL Therapy Center, has won an award as part of the 2018 Ford College Community Challenge to create a lending library of adapted toys and switches for children with diverse abilities in the Pacific Northwest. In line with the competition’s theme, “Making Lives Better,” the lending library will enable families and caregivers to borrow and trial adapted toys and equipment to ensure that they meet an individual child’s needs.

HuskyADAPT — short for Accessible Design & Play Technology — is an interdisciplinary collaboration between the Taskar Center and the UW Departments of Bioengineering and Mechanical Engineering focused on developing resources and infrastructure to expand access to inclusive play technology. The program has trained hundreds of students and members of the community in toy adaptation — skills that come in handy every year at the Taskar Center’s annual holiday toy hackathon.

Through HuskyADAPT, the lending library project, and other activities, the Taskar Center is working to expand toy adaptation globally through education, research, and hands-on projects.

Ford College Community Challenge logo“Play is an important part of learning, growing, and socializing as a child, but most toys are not designed with all users in mind,” said Taskar Center director Anat Caspi. “Thanks to the generous support of the Ford Motor Company Fund, we will be able to extend the power of play to kids who are often overlooked while improving awareness of accessibility issues and community engagement for everyone.”

Learn more about the winning C3 proposal here, and view a video about the project here. Interested in supporting toy adaptation or borrowing adapted toys? Sign up to receive updates from the Taskar Center here.

Congratulations to Anat and the entire team!

July 23, 2018

CS4HS 2018

Tom Cortina (CMU faculty and CS4HS instructor) shows the result of precisely following the teachers’ algorithm for making a PB&J sandwich!

Students from Human Centered Design and Engineering lead the teachers through a design exercise.

Last week marked the Allen School’s annual workshop for middle school and upper school teachers of math and science – CS4HS. Learn more here. And plan to join us next year!

July 21, 2018

Allen School’s new VTA accelerator enables developers to combine leading-edge deep learning with hardware co-design

Diagram of VTA stack

The VTA open-source deep learning accelerator completes the TVM stack, providing complete transparency and customizability from the user-facing framework down to the hardware on which these workloads run.

A team of Allen School researchers today unveiled the new Versatile Tensor Accelerator (VTA), an extension of the TVM framework designed to advance deep learning and hardware innovation. VTA is a generic, customizable deep-learning accelerator that researchers can use to explore hardware-software co-design techniques. Together, VTA and TVM offer an open, end-to-end hardware-software stack for deep learning that will enable researchers and practitioners to combine emerging artificial intelligence capabilities with the latest hardware architectures.

VTA represents more than a stand-alone accelerator design by incorporating drivers, a JIT runtime, and an optimizing compiler stack based on TVM. It offers users the option to modify hardware data types, memory architecture, pipelining stages, and other factors for a truly modular solution. The current version also includes a behavioral hardware simulator and can be deployed on low-cost, field-programmable gate arrays (FPGAs) for rapid prototyping. This potent combination provides a blueprint for an end-to-end, accelerator-centric deep learning system that supports experimentation, optimization, and hardware-software co-design — and enables machine learning practitioners to more easily explore novel network architectures and data representations that typically require specialized hardware support.

“VTA enables exploration of the end to end learning system design all the way down to hardware,” explained Allen School Ph.D. student Tianqi Chen. “This is a crucial step to accelerate research and engineering efforts toward future full-stack AI systems.”

The benefits of VTA can be extended across a range of domains, from hardware design, to compilers, to neural networks. The team is particularly interested to see how VTA empowers users to take advantage of the latest design techniques to fuel the next wave of innovation at the nexus of hardware and AI.

The VTA team: Tianqi Chen, Ziheng Jiang, Thierry Moreau, Luis Vega, Luis Ceze, Carlos Guestrin, Arvind Krishnamurthy

The team behind VTA, left to right, from top: Tianqi Chen, Ziheng Jiang, and Thierry Moreau; Luis Vega, Luis Ceze, and Carlos Guestrin; and Arvind Krishnamurthy.

“Hardware-software co-design is essential for future machine learning systems,” said Allen School professor Luis Ceze. “Having an open, functioning and hackable hardware-plus-software system will enable rapid testing of new ideas, which can have a lot of impact.”

In addition to Ceze and Chen, the team behind VTA includes Allen School Ph.D. students Thierry Moreau and Luis Vega, incoming Ph.D. student Ziheng Jiang, and professors Carlos Guestrin and Arvind Krishnamurthy. As was the case with the original TVM project, their approach with VTA was to engage potential users outside of the lab early and often — ensuring that they not only built a practical solution, but also cultivated a robust community of researchers and practitioners who are shaping the next frontier in computing. This community includes Xilinx, a leader in reconfigurable computing, and mobile technology giant Qualcomm.

“Xilinx Research is following TVM and VTA with great interest, which provide a good starting point for users who would like to develop their own deep learning accelerators on Xilinx FPGAs and integrate them end-to-end with a compiler toolflow,” said principal engineer Michaela Blott.

“Qualcomm is enabling Edge AI with power-efficient AI processors,” said Liang Shen, senior director of engineering at the company. “We are excited with such an open deep-learning compiler stack. It will help to establish a win-win ecosystem by enabling AI innovators to easily deploy their killer applications onto any AI-capable device efficiently.”

“We’re excited to see the start of an open-source, deep learning hardware community that places software support front and center,” Moreau said, “and we look forward to seeing what our users around the world will build with VTA and TVM.”

To learn more about VTA, read the team’s blog post here and technical paper here, and visit the Github repository here. Read more about team’s previous work on the TVM framework here and the related NNVM compiler here.

 

July 12, 2018

Older Posts »