Skip to main content

Alvin Cheung and Shayan Oveis Gharan named 2019 Sloan Research Fellows

Allen School professors Alvin Cheung and Shayan Oveis Gharan were named 2019 Sloan Research Fellows in Computer Science by the Alfred P. Sloan Foundation. The prestigious Sloan Research Fellowship Program recognizes early-career scientists and engineers who have already distinguished themselves through their research and exhibit the potential to make substantial contributions in their respective fields.

Alvin Cheung engages in cross-disciplinary research as a member of the Allen School’s Database and Programming Languages & Software Engineering groups. In his young career, Cheung has produced multiple, paradigm-shifting solutions spanning data management, data analysis, and end-user programming.

“From booking plane tickets to browsing social networking websites, we interact with large amounts of data everyday,” noted Cheung. “My group works on new techniques to help users process and manage data easily, with the goal to simplify software developers’ efforts to build databases and applications without compromising on performance, and enable the rapid development of database applications that provide efficient and reliable data access to all.”

One of Cheung’s key early-career contributions has been his pioneering work on verified lifting, a technique for automatically translating applications written in Java to domain-specific languages such as SQL, Spark, and Hadoop to optimize performance and reduce errors. For example, by consolidating application logic into compact SQL queries in which the SQL engine could identify optimization opportunities, Cheung’s approach increased the speed of applications up to 1,000 fold. The technique also has the effect of “future-proofing” applications driven by big-data systems that are subject to frequent updates.

For another project, Cheung and his collaborators developed methods in theorem proving and model checking to produce Cosette, an automated prover for checking complex SQL queries that can identify bugs contained in hundreds of manually written rules within seconds. Cheung has also contributed to dramatic leaps in end-user programming; for example, he helped develop Scythe to synthesize SQL queries based on input-output examples posted on Stack Overflow by users seeking expert help with writing SQL queries. Their algorithm can answer around 70% of the most SQL-related questions on the platform faster than the human experts can, making it the best SQL synthesizer ever developed.

“Alvin stands out for his interdisciplinary approach and keen intuition regarding how systems are likely to perform, which has enabled him to crack problems that appear impossible to solve,” said Allen School Director Hank Levy. “His breakthrough work on verified lifting and other projects will have a tremendous impact on the functions that future systems will be able to deliver.”

Shayan Oveis Gharan is a member of the Allen School’s Theory of Computation group who focuses on the design and analysis of efficient algorithms for solving fundamental NP-hard counting and optimization problems at the heart of the theory and practice of computing. These problems have implications for a wide range of fields, from logistics and marketing, to planning and policy-making, that cry out for new and better computational tools for managing and exploiting the vast quantities of data available.

“I encode a discrete phenomenon in a complex multivariate polynomial, and I understand it via the interplay of the coefficients, zeros, and function values of this polynomial,” explained Oveis Gharan. “Although these polynomials are so large that they cannot be stored in all computers in the world combined, I use their analytical properties to design efficient optimization algorithms for the underlying discrete phenomenon.”

Among Oveis Gharan’s most notable contributions to date are his works on the Traveling Salesman Problem (TSP) and its asymmetric variant — one of the most studied problems in optimization — and his very recent work on counting problems related to matroids. Oveis Gharan and his collaborators studied TSP using analytical techniques, proposing a new class of algorithms for variants of TSP and introducing novel analysis of classical algorithms for this problem dating back 50 years. The team’s efforts produced the first improvement on existing approximation algorithms which broke barriers that had withstood for three decades despite substantial previous attempts within the theoretical computer science community.

Oveis Gharan’s most recent work on counting bases of matroids has profound applications in many areas, such as network reliability. To illustrate, he cited the road network of Seattle, which became heavily blocked due to a recent snowstorm. If each street x in the city will be blocked with probability px, what is the probability that the whole city will be disconnected — that there is no available route from home to work for some residents — and how should the city position its snow plows to minimize the probability of such an event? Oveis Gharan and his group devised efficient algorithms to answer such questions.

“Shayan’s contributions in combinatorial optimization, such as his work on the Traveling Salesman Problem, have had a profound impact on the theoretical computer science community,” observed Levy. “His creative and driven approach has enabled him to break through long-standing barriers and expand our understanding of fundamental theoretical problems that underpin our field.”

Joining Cheung and Oveis Gharan in the class of 2019 Fellows is professor Kelley Harris of the UW Department of Genome Sciences, who was recognized in the computational and Evolutionary Molecular Biology category for her research into the evolutionary history of humans and other species based on large datasets of genetic variation. Each year, the Sloan Foundation selects a total of 126 Fellows from higher education institutions across North America who are making contributions in Chemistry, Computational and Evolutionary Molecular Biology, Computer Science, Economics, Mathematics, Neuroscience, Ocean Sciences, Physics, or a related field.

“Sloan Research Fellows are the best young scientists working today,” said Adam F. Falk, president of the Alfred P. Sloan Foundation, in a press release. “Sloan Fellows stand out for their creativity, for their hard work, for the importance of the issues they tackle, and the energy and innovation with which they tackle them. To be a Sloan Fellow is to be in the vanguard of 21st century science.”

Recent Sloan Fellowship recipients at the Allen School include Maya Cakmak, who was recognized last year for her work in robotics; Ali Farhadi and Jon Froehlich, who were included among the class of 2017 Fellows for their work in artificial intelligence and human-computer interaction, respectively; and Emina Torlak for her contributions to computer-aided verification and synthesis. A total of 35 current or former Allen School faculty members have been recognized through the fellowship program.

Read the Sloan Foundation announcement here, the complete list of 2019 Fellows here, and a related UW News story here.

Congratulations to Alvin, Shayan, and Kelley!

Read more →

Allen School celebrates dedication of the new Bill & Melinda Gates Center for Computer Science & Engineering

Looking up at the building facade and entrance sign of the Bill & Melinda Gates Center for Computer Science & Engineering against a deep blue sky.
Photo credit: Mark Stone/University of Washington

Yesterday, nearly 300 friends of the Paul G. Allen School gathered to celebrate the dedication of the new Bill & Melinda Gates Center for Computer Science & Engineering on the UW Seattle campus. UW and Allen School leadership were joined onstage by special guests Bill Gates, Washington Governor Jay Inslee, and Microsoft President & Chief Legal Officer Brad Smith in thanking the more than 500 individual donors, local technology companies, and state taxpayers for their support of the project.

The day marked not only the opening of a new building, but also the prospect of a new era of computer science education and impact. “The Gates Center isn’t just a building, it’s a statement about our vision of the future,” said Allen School Director Hank Levy. “We have created a world-class computer science program here, in part because of our focus on technology that helps to solve the world’s biggest challenges. This building enables us to grow those efforts and tackle even bigger challenges.”

One of the ways in which the new building will enable the school to grow its impact is by providing the physical capacity to serve more students. “It’s first and foremost a vehicle for increasing opportunity for Washington’s students,” said UW President Ana Mari Cauce. “Because that’s what we do here, in this outstanding building and all across our campuses. It’s what drives the talented faculty who teach our students and advance discovery. It’s why so many students are eager to come here to learn — both to the University and to this program.”

The spacious and open Gates Center atrium, with sunlight streaming down onto a wooden staircase in the middle of the space. A digital display encased in wood occupies part of one wall. The walkways of two upper floors are visible.
Mark Stone/University of Washington

Cauce highlighted the care and thought that went into the design of the building, which is focused on increasing student capacity and enriching the student experience. The building’s entire first floor is dedicated to the needs of Allen School majors, including a student services center, an undergraduate commons, meeting and collaboration spaces, computer labs and support, and capstone project rooms. The Gates Center also provides much-needed instructional space, in the form of several large classrooms and seminar rooms along with a 240-seat auditorium, and numerous collaboration and community spaces — including a cafe open to the campus and the public, and a 3,000-square-foot events center for hosting workshops, research demos, career fairs, and other community-oriented events.

Emphasizing that even more important than the new building is what goes on inside, Brad Smith — who led the fundraising campaign for the building — saluted the assembled guests who helped make the vision of the Bill & Melinda Gates Center a reality. “It is extraordinary to just look across this room and see the faces of all of the people who contributed so much,” Smith said. “You didn’t hang up when the phone rang. We rolled up our sleeves together. More than 500 people donated their personal funds to this building.” Among them, he noted, were the Friends of Bill & Melinda Gates, a group of more than a dozen couples, led by Charles and Lisa Simonyi, who joined Microsoft in providing a gift to name the building in the Gateses’ honor.

Smith also acknowledged local companies such as Amazon and Zillow that joined Microsoft in supporting the project. “It was a wonderful journey that gave many of us an opportunity to partner together — even competitors,” he noted. “Other companies in Seattle really stepped up.”

A room full of people seated in the center or standing along the sides listens to Governor Jay Inslee speaking from a podium.
Governor Jay Inslee. Photo credit: Matt Hagen

In addition to enabling the Allen School to serve more students, those efforts will also help the school and the UW to stay at the forefront of the computing field. Laboratories in the Gates Center include a wet lab to support the school’s work at the intersection of information technology and molecular engineering; the UW Reality Lab, which focuses on advancing the state of the art in augmented and virtual reality education and research; the Center for Neurotechnology, which aims to use technology to revolutionize the treatment of debilitating neurological conditions; and a 3,000-square-foot robotics laboratory.

Governor Jay Inslee — a proud Husky — noted that the impact of the new building and its inhabitants would extend far beyond their core focus. “This is so much beyond the world of computing,” Inslee said, “because the world of computing feeds every single thing that we’re growing our economy and our society on now.”

Of the 500 donors Smith mentioned, roughly 300 are Allen School alumni. That means nearly 200 people without an alumni connection to the school recognized the potential impact and threw their support behind the project. “From the bottom of my heart, thanks to all of you for what you’ve done to make this amazing building a reality,” said Allen School professor Ed Lazowska.

Hank Levy at the podium, with five people standing in a row behind, all raising their glasses in a toast against a purple backdrop.
Bill Gates, Brad Smith, Jay Inslee, Ana Mari Cauce, Ed Lazowska, Hank Levy. Matt Hagen

Before the program began, Lazowska and Levy had taken Bill Gates, Cauce and Smith on a tour of the new building, visiting several labs and stopping to talk with students along the way. “It was fantastic to take the tour and not only see that it’s an incredible building, but to see some of the great work going on here,” Gates said to the assembled crowd later. Saying that he and Melinda are honored to have a building named after them that will increase the capacity of the school associated with Paul G. Allen, Gates also paid tribute to his late friend and collaborator who passed away last October.

“It would’ve been great if Paul could have been here,” he said. “He deserves so much credit for what happened at Microsoft and always believing in innovation and believing in the University of Washington. So hopefully he somewhere can appreciate the great development that is taking place here.”

Read the UW News release here, GeekWire articles on the building opening here and the dedication here, and a related Seattle Times editorial here.

View more photos of the day’s events below.

The facade of the Bill & Melinda Gates Center, a long, subtly curved four-story building comprising terracotta tiles interspersed with glass windows and matte black metal panels, with a burst of sunlight peeking over the edge of the roof.
The Bill & Melinda Gates Center provides the Paul G. Allen School with sufficient space to double annual degree production. Mark Stone/University of Washington

A group of faculty and students gather and pose for a selfie with Bill Gates in a lab.
Bill Gates stops by the new wet lab for a selfie with members of the Molecular Information Systems Laboratory. Matt Hagen

A group of four people stand in front of a wall-size digital display, one of whom interacts with the touchscreen.
Bill Gates checks out the interactive wall highlighting the impact of computing on the Seattle region and the world with Ed Lazowska and Hank Levy. Matt Hagen

A small group of people standing in the middle of a room with computer desks against the wall and the windows. Someone wearing a combination of wires and a camera on their head is talking while gesturing toward a fluffy malamute dog wearing similar equipment.
Ana Mari Cauce, Brad Smith and Bill Gates are treated to a demonstration of a new machine learning system based on canine perception. Matt Hagen

People walk through a crowded cafe.
Bill Gates visits the new Microsoft Cafe on the first floor of the Bill & Melinda Gates Center. Matt Hagen
Two rows of smiling college students dressed in purple Allen School-branded shirts flanking the purple carpet, waiting to welcome guests to the dedication event.
Allen School undergraduate students are ready to welcome guests and give tours of the Bill & Melinda Gates Center. Matt Hagen
UW President Ana Mari Cauce speaks at a podium.
UW President Ana Mari Cauce stresses the impact of the Bill & Melinda Gates Center in terms of expanding opportunities for Washington’s students. Matt Hagen
A row of five people dressed in business attire seated along a wall laughing.
One of many light-hearted moments onstage at the dedication of the Bill & Melinda Gates Center. Matt Hagen
A row of four people in business attire standing onstage against a purple backdrop. The two people in the center are holding rectangular metal plaques depicting portraits of the other two.
Michael Bragg, Dean of the UW College of Engineering, joins Ana Mari Cauce in a surprise tribute to Ed Lazowska and Hank Levy. Matt Hagen
Bill Gates speaks at a podium against a purple backdrop.
A poignant moment in the program came when Bill Gates remembered his friend and Microsoft co-founder, the late Paul G. Allen. Matt Hagen
Two people standing outside of floor-to-ceiling glass doors with a white frosted sign on the glass that reads Charles & LIsa Simonyi Undergraduate Commons.
Lisa and Charles Simonyi, who co-led the effort to name the building for the Gateses, check out the Undergraduate Commons named in their honor. Lisa Simonyi
A girl looks with curiosity at a PR2 robot with its arm outstretched.
After the dedication, guests were invited to explore the building. Here, a future CSE major meets one of the Allen School’s many robots. Matt Hagen
Read more →

Remembering Ted Kehl

The Allen School family mourns the passing of professor emeritus Ted Kehl, one of the original group of seven faculty members who founded the Department of Computer Science at the University of Washington in the 1960s, and someone who was instrumental in introducing Seattle to a hardware revolution in the form of very large-scale integrated (VLSI) circuit design — a development that transformed computing and modern society.

Kehl earned his Ph.D. at University of Wisconsin-Madison in 1961 and joined the UW faculty six years later. As a professor in both Computer Science & Engineering and the School of Medicine, Kehl was known for his interdisciplinary approach to research long before it became fashionable. In addition to teaching physiology, biophysics and computer science, Kehl ran a hardware lab focused on the development of efficient computer hardware for biomedical research.

He took a keen interest in VLSI research and worked with Carver Mead of CalTech — who co-wrote the book on VLSI design along with Lynn Conway — to bring a new VLSI course to Seattle, jointly sponsored by UW and Boeing. That effort led to the establishment of the University of Washington/Northwest VLSI Consortium, a major initiative funded by the Department of Defense’s Advanced Research Projects Agency (ARPA) and led by Kehl in partnership with five regional companies. The course helped spawn the MicroVAX-I processor, which was developed by Digital Equipment Corporation under the leadership of Dave Cutler, then-head of the DECwest Engineering team. Kehl subsequently launched an undergraduate seminar in VLSI design in which teams of students had the opportunity to work with professional mentors drawn from the semiconductor industry on their designs.

In 1983, Kehl co-founded a startup company called IC Designs with his former Ph.D. student John Torode. IC Designs started out providing software and fabrication services for application-specific integrated circuits (ASICs) before its focus evolved into the design of ASICs for use in personal computers. The company grew to over $30 million in annual sales before its acquisition by industry leader Cypress Semiconductor Corp. in 1993.

Kehl retired from UW in 1997.

Our thoughts are with Ted’s family, friends, and the many students and collaborators whose lives he touched during his long and influential career.

Read more →

Explore the new Bill & Melinda Gates Center at the Allen School’s March 1st open house!

On Friday, March 1st, the Paul G. Allen School will open the doors of the new Bill & Melinda Gates Center for Computer Science & Engineering to the community. Friends, alumni, and campus and regional partners are invited to join us for an afternoon of building tours, demos, and interactive media that will showcase how the Bill & Melinda Gates Center will enable us to educate more of Washington’s students for high-impact careers, advance scientific discovery and innovation, and make meaningful contributions to society — here at home, and around the globe.

The Bill & Melinda Gates Center Open House will take place from 2:00 pm to 5:00 pm. During that time, the Allen School is opening up access to the entire building and inviting visitors to explore the variety of community spaces, instructional facilities, research labs, and people-centric features of this exciting new facility. Both organized tours and self-guided tours will be available. Among the highlights:

Atrium & Tribute Wall

The expansive three-story Gates Center atrium provides an inviting welcome for students and visitors and functions as the building’s “living room.” One of the main features of interest to visitors is our Tribute Wall, an interactive media display developed by the firm Belle & Wissell and situated outside of the new Silverberg Family Student Services Center that enables visitors to explore the history of the Allen School, the growth of technology in the Puget Sound region, the many contributions of Paul G. Allen and of Bill and Melinda Gates, and the importance of broadening participation in the field.

Just off the main entrance, visitors can enjoy the view of Stevens Way and the Allen Center from the Microsoft Cafe, or climb the open-air Sujal & Meera Patel Innovation Stairway that connects the atrium with the second and third floors.

Instructional Spaces

As the signature education space in the Gates Center, the 240-seat Amazon Auditorium on the ground floor will host large classes, special lectures, and other events open to the campus community. The adjoining Amazon Gallery is a gathering space for students that also connects the auditorium with nearby instructional spaces such as the 100-seat Brad & Kathy Smith and David & Cathy Habib Classrooms.

The ground floor can be reached via the Anita Borg Grand Stairway, which features views of a revitalized Snohomish Lane and is named for computer engineer Anita Borg, a former UW student and tireless advocate for diversity in computing (including co-founding the Grace Hopper Celebration of Women in Computing). Seminar rooms and capstone project rooms are located throughout the building.

Community Spaces

The Gates Center is designed to foster a sense of belonging and community, and to support the serendipitous meetings and collaborations that are at the heart of Allen School innovation.

Areas of the building that epitomize these values include the Charles & Lisa Simonyi Undergraduate Commons, a space occupying the east end of the first floor that is set aside especially for Allen School majors and features seating areas, meeting rooms, computer support, and a kitchen; and the Research Commons, a bright, two-story space for faculty, staff, graduate students and guests to congregate and share ideas. Smaller breakout spaces, meeting rooms, and collaboration spaces are to be found throughout the building.

Event Center

Occupying the entire fourth floor of the building, the event center comprises three distinctive spaces offering sweeping views of the UW campus, Lake Washington, and Mount Rainier.

The signature event space is the Zillow Commons, a flexible venue for workshops, conferences and community-focused events. From the Zillow Commons, visitors can take in the view from the Wilma Bradley Terrace, featuring an outdoor seating area, or admire an installation by sculptor and UW alumnus George Rodriguez (MFA, ‘09) in the Steve & Heather Singh Event Gallery.

Research Labs

In addition to its many student-focused and community spaces, the Bill & Melinda Gates Center is home to a number of laboratory spaces that support Allen School research, including the Center for Neurotechnology, which develops innovative devices for individuals with debilitating neurological conditions; the Center for Game Science, pioneering games for scientific discovery and for education; the UW Reality Lab, a leading center for advancing the state of the art in virtual and augmented reality; the Molecular Information Systems Lab, which explores the intersection of information technology and biology; the Taskar Center for Accessible Technology, which develops, translates and deploys open source universally accessible technologies with a focus on benefiting populations with motor limitations or speech impairment; and a 3,000-square-foot Robotics Laboratory complete with a functioning kitchen to support the development of robots that assist humans with everyday tasks.

Hundreds of Allen School alumni and friends, the local technology community, the University, and the State of Washington came together to support the Bill & Melinda Gates Center, in a campaign led by Microsoft President Brad Smith. And, while Bill and Melinda Gates supported the project generously, the building was named in their honor as a gesture of admiration and gratitude by Microsoft and 13 couples who are long-time friends of the Gateses – exemplifying the wonderful community in which we live.

Join us in celebrating this incredible milestone and what it means for our program, our campus, our region, and the world!

Photo credits: Raphael Gaultier/University of Washington Read more →

UW’s Jennifer Mankoff, Batya Friedman and Jacob Wobbrock elected to CHI Academy

Allen School professor Jennifer Mankoff

Three University of Washington faculty who are recognized leaders in human-computer interaction (HCI) research — Allen School professor Jennifer Mankoff and Information School professors (and Allen School adjunct professors) Batya Friedman and Jacob Wobbrock — have been honored by the Association for Computing Machinery’s Special Interest Group on Computer-Human Interaction (SIGCHI) with election to the CHI Academy. The CHI Academy is composed of individuals who have made substantial, cumulative contributions to the field of HCI through the development of new research directions and innovations and have influenced the work of their peers. Mankoff, Friedman and Wobbrock are three of only eight new CHI Academy members elected this year!

Jennifer Mankoff, who holds the Richard E. Ladner Endowed Professorship at the Allen School, is a leading researcher in human-computer interaction who has devoted her career to promoting a digital future defined by inclusion and accessibility for all. As director of the Make4All Group and a member of the interdisciplinary DUB (Design, Use, Build) group, one of the ways in which she has sought to advance that goal is by revolutionizing and democratizing the production of assistive technologies using 3D printing and other advanced fabrication techniques.

In one of her recent projects, Mankoff worked with Allen School colleague Shyam Gollakota and members of the Networks & Mobile Systems Lab to develop the first 3D-printed objects capable of tracking and storing data about their use, with potential applications ranging from smart prescription pill bottles to customized prosthetic devices. She also led the development of a paradigm-shifting technology for screen readers — Spatial Region Interaction Techniques, or SPRITEs — in collaboration with colleagues at Carnegie Mellon University, where she was a faculty member before joining the Allen School. SPRITEs leverages a standard keyboard to make interactive web content more accessible for people who are blind or low-vision. In addition to her focus on accessibility, Mankoff has been a pioneer in applying computation to address societal challenges around sustainability, such as leveraging Internet-scale technologies to reduce energy consumption.

Mankoff’s work previously has been recognized with an Alfred P. Sloan Fellowship, an IBM Faculty Fellowship, a GVU Impact Award from her alma mater, Georgia Tech, and Best Paper awards at the ASSETS, CHI, and Mobile HCI conferences.

“It’s an honor to be included in the CHI Academy, and one I hope to live up to in my future research as much as in my past research,” Mankoff said. “I am passionate about creating accessible, inclusive systems and the engineering to make them feasible and deployable, and grateful for all the students and collaborators who have helped me to create them and to be recognized for this work.”

iSchool professor Batya Friedman

Joining Mankoff in the 2019 class of CHI Academy inductees are fellow DUB members Batya Friedman and Jacob Wobbrock, professors in the iSchool and adjunct professors in the Allen School.

Friedman is a pioneer of value sensitive design, an approach to developing technology that accounts for human values. Her work has influenced multiple fields beyond HCI, including computer security, architecture, civil engineering, law, transportation, and many others.

Wobbrock’s research aims to develop a scientific understanding of how people interact with technology and information. His work seeks to improve the quality of those interactions, particularly for people with disabilities, using human performance measurement and modeling, input and interaction techniques, accessible computing, and more.

“Jen, Batya, and Jake have helped build UW’s reputation as a center of excellence in HCI research and innovation,” said Hank Levy, director of the Allen School. “All three have made lasting contributions not just in HCI and computing, but also in many other fields in their quest to use technology to solve some of society’s greatest challenges. Their induction into the CHI Academy is a testament to their technical leadership and enduring impact by putting people first.”

iSchool professor Jacob Wobbrock

Current CHI Academy member and iSchool dean Anind Dey concurred. “Combining this with three members of the 2019 CHI Academy class being from the UW really solidifies the UW as a global leader in HCI,” he said in a related announcement. “The level of impact all three have had for such a sustained period of time is admirable, and makes them very deserving of recognition by the CHI Academy.”

The new inductees will be formally recognized at the CHI 2019 conference to be held in Glasgow, Scotland in May. Learn more about the 2019 SIGCHI Awards here, and read the related iSchool article here.

Congratulations to Jen, Batya, and Jake!

Read more →

Allen School celebrates opening of NVIDIA’s new robotics research lab in Seattle

Allen School director Hank Levy welcomes NVIDIA to Seattle. Credit: NVIDIA

In yet another sign of the Puget Sound region’s emergence as a center of advanced robotics and artificial intelligence research, NVIDIA last week marked the official opening of its new AI Robotics Research Lab just blocks away from the Allen School and University of Washington’s Seattle campus. Led by Allen School professor Dieter Fox, NVIDIA’s new lab in the UW CoMotion building will bring together multidisciplinary teams to focus on the development of next-generation robots that can work safely and effectively alongside humans.

Many UW faculty and students were on hand to toast the new lab, including Allen School director Hank Levy. “I’d just like to say how excited we are to have NVIDIA here in Seattle,” Levy said in remarks welcoming the assembled guests to the lab for the first time. “At this moment, AI is changing the world, and NVIDIA’s hardware is a driving force in that movement.”

NVIDIA CEO Jensen Huang and a guest get hands-on with a touch-sensitive robot on display in the Seattle lab.

The new lab represents a couple of firsts for NVIDIA — not only is it the company’s first research outpost in Seattle, but it is also the very first NVIDIA research lab focused on robotics. Among the highlights of the 13,000 square-foot space is a working kitchen, complete with drawers, cabinets and appliances, in which the team hopes to whip up new capabilities in human-robot collaboration. “We want to ultimately get a robot that can cook a meal with you,” Fox said, “or that you can just talk to it and tell the robot what you want to do.”

To get there, Fox and his colleagues will need to make progress in a variety of areas, spanning artificial intelligence, robotic manipulation, machine learning, computer vision, natural language processing, and more. Noting that the new lab intends to publish its research so that it can be built upon by others — “we aren’t keeping it to ourselves” — Fox emphasized that its work will be a collaborative endeavor through which researchers from NVIDIA, UW, and other leading universities would push the field of robotics forward.

Allen School professors Ed Lazowska (left) and Dieter Fox. Under Fox’s leadership, the new lab intends to collaborate with researchers at UW and other leading universities and publish the results. Credit: NVIDIA

That sentiment was echoed by NVIDIA CEO Jensen Huang, who emphasized that the culture of collaboration that underpins UW research was also “the perfect culture for creating a robotics platform” in a city that he regards as “one of the greatest hubs of computer science in the world,” thanks to the presence of UW, Microsoft, Amazon, and many others.

“Robotics is going to change the world,” Levy said, “and having an NVIDIA lab this close to UW, started by Allen School professor Dieter Fox, gives us an incredible opportunity to work together to advance the state of the art. We are looking forward to long-term and successful collaborations between this lab, our faculty and students, and other members of the Seattle tech community.”

To learn more, read NVIDIA’s blog post and check out coverage by The Daily, GeekWire, MIT Tech Review, IEEE Spectrum, Robotics & Automation News, The Robot Report, Engadget, Hot Hardware, eTeknix, Neowin, SD Times, and the Puget Sound Business Journal (subscription required).

Read more →

Mobile app developed by UW researchers offers people a “Second Chance” in the event of an opioid overdose

A person interacts with the Second Chance mobile app, activating the "monitor" function before using opioids
Credit: Mark Stone/University of Washington

Someone in the United States dies from an opioid overdose every 12 and a half minutes, according to data from the National Institute on Drug Abuse, and the rise in fatalities stemming from illicit opioid use is widely recognized as a public health epidemic. Many of these deaths could be prevented by rapid detection and intervention, including the administration of naloxone to reverse the effects of an overdose. Now, thanks to researchers in the Allen School’s Networks & Mobile Systems Lab and UW Medicine’s Department of Anesthesiology & Pain Medicine, a solution for preventing opioid-related deaths may be at hand. In a paper published today in Science Translational Medicine, the team describes a new contactless smartphone app capable of detecting signs of opioid overdose. Called Second Chance, the app converts the phone’s speaker and microphone into an active sonar system to unobtrusively monitor a person’s breathing and movements from distances of up to three feet, looking for patterns that indicate that they may be in danger.

According to one of those researchers, Allen School professor Shyam Gollakota, the ultimate goal in developing the app is not only to monitor a person’s condition, but eventually be able to connect users immediately with potentially life-saving treatment. “The idea is that people can use the app during opioid use so that if they overdose, the phone can potentially connect them to a friend or emergency services to provide naloxone,” Gollakota explained in a UW News release.

But first, the team had to develop a reliable algorithm that would work in real-world settings. Gollakota and his collaborators — Allen School Ph.D. student Rajalakshmi Nandakumar and Dr. Jacob Sunshine, a physician scientist at UW Medicine — looked northward to Insite, the first legal supervised injection site in North America. Located in Vancouver, British Columbia, Insite hosts approximately 500 supervised injections per day. There, Nandakumar and her colleagues were able to gather data on individuals’ breathing patterns before and after opioid injection in a safe setting — gaining valuable insights into how Second Chance might function in actual situations where opioids are being used.

“The participants prepares their drugs like they normally would, but then we monitored them for a minute pre-injection so the algorithm could get a baseline value for their breathing rate,” Nandakumar explained. “After we got a baseline, we continued monitoring during the injection and then for five minutes afterward, because that’s the window when overdose symptoms occur.”

Those symptoms might include cessation of breathing for 10 seconds or more — known as post-injection central apnea — and opioid induced respiratory depression, in which a person’s respiratory rate slows significantly to seven or fewer breaths per minute. In addition to measuring a person’s breathing, the app is capable of detecting changes in a person’s posture, such as a slumping of the head, which could indicate that they are in danger. In cases where someone is alone with no one to witness symptoms such as these, an app like Second Chance could be their only means of getting help. For this reason, the researchers couldn’t leave the effectiveness of their algorithm to chance; they had to be confident that the app would do what it was designed to in the wild. To that end, they looked for a way to test the app on symptoms consistent with an overdose without putting anyone at risk.

Overdose events at facilities like Insite are rare by design. But Sunshine, an anesthesiologist, knew of another type of facility where many of the same symptoms can be safely simulated: the operating room. “When patients undergo anesthesia, they experience much of the same physiology that people experience when they’re having an overdose,” he explained. “Nothing happens when people experience this event in the operating room because they’re receiving oxygen and they are under the care of an anesthesiology team.”

The smartphone interface shows the Second Chance app dialing 9-1-1 for emergency intervention after detecting signs of an overdose
Credit: Mark Stone/University of Washington

The team worked with Sunshine’s colleagues in UW Medicine to test the algorithm in what amounted to a real-world simulation of an overdose, with the help of healthy patients undergoing elective surgery who offered their informed consent. During their regularly scheduled procedures, the participants were administered standard anesthetic medications that prompted 30 seconds of slowing or stopped breathing while being monitored by Second Chance. In 19 out of 20 cases, the app correctly detected the symptoms that correlate to an overdose; in the one example that it didn’t, the breathing rate was just above the threshold of what would be considered a sign of overdose.

Having validated their approach, the researchers aim to commercialize Second Chance through Sound Life Sciences, Inc., a digital therapeutics company spun out of the University of Washington, and seek approval from the U.S. Food and Drug Administration (FDA). While the app is technically capable of measuring symptoms consistent with an overdose of any form of opioid, including prescription opioids taken by mouth, the researchers are quick to point out that so far, they have only tested it in scenarios involving use of illicit injectable opioids — the most common source of death by overdose. As Sunshine points out, it’s a human toll that is completely preventable with timely intervention, which as the name of the app suggests, would offer people the proverbial second chance.

“The goal of this project is to try to connect people who are often experiencing overdoses alone to known therapies that can save their lives,” he said. “We hope that by keeping people safer, they can eventually access long-term treatment.”

Learn more about Second Chance in the Science Translational Medicine paper here, the UW News release here, and a related UW Medicine story here. Check out coverage by Scientific American, MIT Technology Review, Science News, CNBC, Mother Jones, U.S. News & World Report, Axios, Futurism, CNET, Fast Company, Engadget, New Atlas, The Verge, Smithsonian, KOMO News, UPI, Tech Times, TechSpot, the Associated Press, and MD Magazine. Listen to Nandakumar discussing the Second Chance app on NPR’s Science Friday here, and watch a related Reuters video here.

Read more →

Ras Bodik, Alec Wolman, and Aaron Hertzmann recognized as Fellows of the ACM for outstanding contributions to the field of computing

Association for Computing Machinery logo

Three members of the Allen School family were recently named Fellows of the Association for Computing Machinery (ACM) in recognition of their professional achievements. Professor Rastislav (Ras) Bodik of the Allen School’s Programming Languages & Software Engineering (PLSE) group, former postdoc Aaron Hertzmann of Adobe Research, and alumnus Alec Wolman (Ph.D., ‘02) of Microsoft Research were among the 56 ACM members worldwide to be recognized in the 2018 class of Fellows for their outstanding technical contributions in computing and information technology and their service to the computing community.

“In society, when we identify our tech leaders, we often think of men and women in industry who have made technologies pervasive while building major corporations,” said ACM President Cherri M. Pancake in a press release. “At the same time, the dedication, collaborative spirit and creativity of the computing professionals who initially conceived and developed these technologies goes unsung. The ACM Fellows program publicly recognizes the people who made key contributions to the technologies we enjoy.”

Ras Bodik

Ras Bodik portrait

In Ras Bodik’s case, those contributions center on his work in algorithmic program synthesis, a field that he helped start in the mid-2000’s. Program synthesis — sometimes referred to as automatic programming — simplifies the process of writing computer programs by asking the computer to search for a program that accomplishes user’s goals. Over the last 15 years, Bodik and his collaborators demonstrated practical applications of program synthesis by developing efficient algorithms and making them available to programmers by combining language design with new programmer interaction models.

“One of the benefits of program synthesis is that it makes computing more accessible, even as our systems increase in scale and complexity,” said Bodik. “By making it possible to start from an incomplete specification, such as user demonstrations, program synthesis opens up programming to novice users while it eases the process for those of us who write programs for a living.”

Bodik has shown program synthesis to be a versatile technique that can benefit experts and non-experts alike and attack problems with real-world impact. Bodik’s interest in program synthesis started at the University of Wisconsin, where he worked on mining program specifications from software corpuses. When he was a faculty member at the University of California, Berkeley, he and then-Ph.D. student Armando Solar-Lezama, now a member of the faculty at MIT, laid the groundwork for modern program synthesis through so-called program sketches and by reducing the search problem to SAT constraint solving. To help programmers create new synthesizers, he collaborated on Rosette, a solver-aided programming framework that was developed by Allen School professor Emina Torlak. Rosette demonstrated how program synthesis can make up for the absence of compilers in certain domains and avoid error-prone, low-level code by enabling programmers to produce domain-specific tools for verification, synthesis, and debugging.

An attractive feature of program synthesis is that it can be applied outside the realm of computer science to solve problems in cases where the solution can be modeled as a program — a feature that Bodik has been keen to exploit to generate practical solutions for scientists working in other domains. For example, he and his team have enabled the use of program synthesis by biologists to infer cellular models from mutation experiments, and by data scientists to simplify the layout of data visualizations.

As Bodik and his colleagues have expanded program synthesis into a broadening array of applications, they have taken an interdisciplinary approach to research that has led to advancements in multiple computing domains, including more efficient algorithms to enable synthesis of large SQL queries and the extension of programming by demonstration to the web browser. The Helena project, for example, enabled many teams of social scientists collect web datasets which they use to help city governments design new policies.

Bodik is also credited with spurring the rapid advancement of the synthesis community to where it has achieved parity with human programmers on at least a dozen tasks that typically require months of training. Half of those milestones are based on work produced by Bodik and his collaborators.

“We have reached the point where novice programmers can generate programs that function as well or better than those created by experts,” Bodik observed. “Program synthesis, especially when combined with other technologies for human-computer interaction, can be a great leveler.”

Aaron Hertzmann

Aaron Hertzmann portrait

Aaron Hertzmann, a former postdoc in the Allen School’s Graphics & Imaging Laboratory (GRAIL) from 2001 to 2002 and an affiliate faculty member since 2005, was recognized for his contributions spanning computer graphics, non-photo realistic rendering, computer animation, and machine learning. After leaving the Allen School, Hertzmann spent 10 years as a faculty member in the Computer Science Department at the University of Toronto before joining Adobe Research, where he is a principal scientist focused on computer vision and computer graphics.

Hertzmann is known for his work on new methods for extracting meaning from images and modeling the human visual system, as well as the creation of robust software tools for creating expressive, artistic imagery and animation in the style of human painting and drawing. Early in his career, as a member of New York University’s Media Research Laboratory, Hertzmann contributed new techniques for non-photorealistic rendering that combined the expressivity of those natural media with the flexibility of computer graphics. For example, he developed a method for painterly rendering to create images that appear hand-painted from photographs using multiple brush sizes and long, curved brush strokes. He extended the concept to video with new methods for “painting over” successive frames of animation to produce a novel visual style — work that he later built upon to produce AniPaint, an interactive system for generating painterly animation from video sequences that granted users more direct control over stroke synthesis. Among Hertzmann’s many other contributions to computing for art and design are new algorithms for generating line-art illustrations of smooth surfaces, a new method for computing the visible contours of a smooth 3D surface for stylization, and tools for automatically creating graphic design layouts and generating interactive layout suggestions.

Hertzmann has also worked on a number of projects for building computational models of human motion and for perceiving the 3D structure of people and objects in video that gained traction in the broader graphics and special effects communities. For example, Hertzmann contributed to the development of the style machine, a statistical model that can generate new motion sequences based on learned motion patterns from a series of motion capture sequences — the first system for “animation by example” that has since gained popularity. Other contributions include an inverse kinematics system that produces real-time human poses based on a set of constraints that subsequently was deployed in the gaming industry, and Nonlinear Inverse Optimization, a novel approach for generating realistic character motion based on a dynamical model derived from biomechanics.

More recently, Hertzmann has turned his attention to virtual reality (VR). One of his projects that has gained prominence is Vremiere, a system for enabling direct editing of spherical video in immersive environments. This work formed the basis of Adobe’s Project Clover in-VR video editing interface announced at its MAX Creative Conference in 2016 and earned the team a Best Paper Honorable Mention at last year’s ACM Conference on Computer-Human Interaction (CHI 2017). Hertzmann worked with the same group of collaborators to produce CollaVR, a system that enables collaborative review and feedback in immersive environments for multiple users.

“My post-doctoral experience at UW, and the long-term collaborations that arose from it, were some of the richest of my career,” Hertzmann said about his time with GRAIL. “They broadened my experience into several research areas that were new to me.”

Alec Wolman

Alec Wolman portrait

Alec Wolman earned his Ph.D. from the Allen School working with professors Hank Levy and Anna Karlin. He is a principal researcher in Microsoft’s Mobility and Networking Research Group, where he manages a small team of researchers and developers. His research interests span mobile systems, distributed systems, operating systems, internet technologies, security, and wireless networks. In naming him a 2018 Fellow, ACM highlighted his many contributions in the area of trusted mobile systems and services.

One of those contributions was fTPM — short for “firmware Trusted Platform Module” — which was implemented in millions of Windows smartphones and tablets and represented the first implementation of the TPM 2.0 specification. fTPM enables Windows on ARM SoC platforms to offer TPM-based security features including BitLocker, DirectAccess, and Virtual Smart Cards. fTPM leverages ARM TrustZone to implement these secure services on mobile devices and offers security guarantees similar to a discrete TPM chip — one of the most popular forms of trusted hardware in the industry. Wolman was also one of the researchers behind Trusted Language Runtime (TLR), a system that made it easy for smartphone app developers to build and run trusted applications while offering compatibility with legacy software and operating systems. In addition, he contributed to software abstractions for trusted sensors used in mobile applications; the cTPM system to extend trusted computing abstractions across multiple mobile devices; and Sentry, which protects sensitive data on mobile devices from low-cost physical memory attacks.

Wolman’s contributions in distributed systems and cloud services has had a significant impact on Microsoft’s products, serving many millions of users. Recently, he helped design and develop Microsoft Embedded Social (ES), a scalable Azure service that enables application developers to incorporate social engagement features within their apps in a fully customizable manner. ES has been incorporated in nearly a dozen applications and has served roughly 20 million users to date. Previously, Wolman co-developed the partitioning and recovery service (PRS) as a component of the Live Mesh file synchronization product. PRS, which enables data distribution across a set of servers with strong consistency as a reusable component, was later incorporated into the cloud service infrastructure for Windows Messenger and Xbox Live.

Wolman’s work on offloading computations — including Mobile Assistance Using Infrastructure (MAUI) and Kahawai — demonstrated how mobile devices can leverage both the cloud and edge computing infrastructure and are considered seminal pieces of research that influenced thousands of follow-on papers. Wolman and his team also collaborated with Allen School researchers on the development of MCDNN, a framework for mobile devices using deep neural networks without overtaxing resources such as battery life, memory, and data usage.

The Fellows Program is the ACM’s most prestigious member level and represents just one percent of the organization’s global membership. The ACM will formally honor the 2018 Fellows at its annual awards banquet to be held in San Francisco, California in June.

Learn more about the 2018 class of ACM Fellows here.

Congratulations to Ras, Aaron, and Alec!

Read more →

Ph.D. student Ewin Tang recognized in Forbes’ “30 Under 30” in science for taking the “quantum” out of quantum computing

Ewin Tang

Allen School Ph.D. student Ewin Tang has landed a spot on Forbes’ 2019 list of “30 Under 30” in science for developing a method that enables a classical computer to solve the “recommendation problem” in roughly the same time that a quantum computer could — upending one of the most prominent examples of quantum speedup in the process. Her algorithm offers an efficient solution to a core machine learning problem which models the task of predicting user preferences from incomplete data based on people’s interactions with sites such as Amazon and Netflix.

Tang, who arrived at the University of Washington this past fall to work with professor James R. Lee in the Theory of Computation group, tackled the recommendation problem as an undergraduate research project while at the University of Texas at Austin. The project was an outgrowth of a quantum information course she took with UT Austin professor Scott Aaronson, who challenged her to prove that no fast classical algorithm exists for solving the problem. He was inspired to set this particular challenge after Iordanis Kerenidis and Anupam Prakash — researchers at Université Paris Diderot and University of California, Berkeley, respectively — published a quantum recommendation algorithm that could solve the problem exponentially faster than a classical computer could, in part by relying on a randomized sample of user preferences rather than attempting to reconstruct a full list, in fall 2016. But they did not prove definitively that no such classical algorithm existed.

Enter Tang and Aaronson. According to an article about Tang’s discovery that appeared last summer in Quanta Magazine, Aaronson believed that a comparable algorithm didn’t exist, and that his student would confirm Kerenidis’ and Prakash’s discovery. But as Tang worked through the problem during her senior year, she started to believe that, actually, it did exist. After Tang presented her results at a workshop at UC Berkeley that June, other members of the quantum computing community agreed — confirming it as the fastest-known classical algorithm and turning a two-year-old discovery on its head.

Or, as Tang recently explained to GeekWire, “We ended up getting this result in quantum machine learning, and as a nice side effect a classical algorithm popped out.”

The quantum algorithm relies on sampling to make the process of computing high-quality recommendations more efficient, built on the assumption that most users and their preferences can be approximated by their alignment with a small number of stereotypical user preferences. This approach enables the system to bypass reconstruction of the complete preference matrix, in which many millions of users and elements may be represented, in favor of honing in on the highest-value elements that matter most when giving recommendations. Tang employs a similar strategy to achieve similar results — proving that a classical algorithm can produce recommendations just as well – and nearly as fast – as the quantum algorithm can, without the aid of quantum computers.

According to Tang’s Ph.D. advisor, Lee, her achievement extends far beyond the original question she set out to answer.

“Ewin’s work provides more than just a (much) faster algorithm for recommendation systems — it gives a new framework for the design of algorithms in machine learning,” Lee said. “She and her collaborators are pursuing applications in clustering, regression, and principal component analysis, which are some of the most fundamental problems in the area. Her work is also a step toward clarifying the type of structure quantum algorithms must exploit in order to achieve an exponential speedup.”

Check out Tang’s Forbes profile here and a related GeekWire article here. Read the original story of her discovery in Quanta Magazine here.

Way to go, Ewin!

Read more →

University of Washington researchers create a buzz with Living IoT system that replaces drones with bees

Bumblebee wearing the Living IoT backpack while foraging on a flower.

A team of researchers in the Networks & Mobile Systems Lab led by Allen School professor Shyam Gollakota and the Autonomous Insect Robotics (AIR) Laboratory led by Mechanical Engineering professor Sawyer Fuller have designed a new mobile platform that combines sensing, computation, and communication in a package small enough to be carried by a bumblebee. Dubbed Living IoT, the system allows nature to take its course while enabling new capabilities in agricultural and environmental monitoring.

Living IoT’s reliance on biological, rather than mechanical, flight presents new opportunities for continuous sensing without having to repeatedly recharge power-hungry batteries throughout the day. However, it did present some novel challenges for the team, not least of which was how create a form factor small enough and light enough to ride on the back of a bee that could still power data collection and communication.

“We decided to use bumblebees because they’re large enough to carry a tiny battery that can power our system, and they return to a hive every night where we could wirelessly recharge the batteries,” explained Vikram Iyer, a Ph.D. student in Electrical & Computer Engineering and co-primary author on the research paper.

The resulting design, which incorporates an antenna, envelope detector, sensor, microcontroller, backscatter transmitter, and rechargeable battery, weighs in at a minuscule 102 milligrams — roughly half of a bumblebee’s potential payload and less than the maximum weight the team determined the insect could carry without interfering with takeoff or controlled flight.

Vikram Iyer at the UW's urban farm with a one of the Living IoT bumblebees

“The rechargeable battery powering the backpack weighs about 70 milligrams,” noted Allen School Ph.D. student Rajalakshmi Nandakumar in a UW News release. “So we had a little over 30 milligrams left for everything else, like the sensors and the localization system to track the insect’s position.”

The battery offers seven hours of uninterrupted data collection time before it has to be recharged. As the bees fly around, their onboard sensors collect data such as temperature, humidity, and light intensity and store it for later upload back at the hive. That upload happens wirelessly using backscatter communication, a technique honed by members of the Networks & Mobile Systems Lab to enable a range of IoT applications.

To enable location-based sensing and data tracking in the absence of flight control, the researchers came up with a novel approach for self-localization that relies on passive operations in place of power-hungry radio receiver components. Instead, strategically positioned access point (AP) radios broadcast signals that are received by the bees as they go about their business. Using changes in the signal amplitude extracted from the onboard envelope detector, the team is able to determine the insect’s angle relative to each AP at various points throughout the day and triangulate its position to localize the sensor data. According to Allen School Ph.D. student Anran Wang, the system can detect the bee’s position within 80 meters of the antennas — roughly three-quarters of the length of a football field.

For the moment, the system is limited to roughly 30 kilobytes of data storage. If that can be expanded to include tiny cameras live streaming information about the condition of crops in the field or even the bees themselves, the notion of using live insects in place of drones for smart agriculture and other applications could really take off.

“Having insects carry these sensor systems around could be beneficial for farms because bees can sense things that electronic objects, like drones, cannot,” explained Gollakota. “With a drone, you’re just flying around randomly, while a bee is going to be drawn to specific things, like the plants it prefers to pollinate. And on top of learning about the environment, you can also learn a lot about how the bees behave.”

The team will present its research paper at MobiCom 2019, the Association for Computing Machinery’s 25th International Conference on Mobile Computing and Networking.

Read the UW News release here and visit the Living IoT project page here. Check out coverage in GeekWire, NBC MachCNBCTechCrunch, Digital TrendsViceMIT Technology ReviewNew Atlas, FuturityEngadget, Futurism, InverseForbesKOMO News, KUOW, The Seattle Times, Seattle PIBusiness Insider, Digital Journal, and IEEE Spectrum.

Photo credits: Mark Stone/University of Washington

Read more →

« Newer PostsOlder Posts »